Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical ...Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical poling states is demonstrated in C040Fe40B20//(001)-cut Pb(Mgl/3Nb2/3)O3-25PbTiO3 (PMN-PT). The specific magneto- electric coupling mechanism therein is experimentally verified to be related to the synchronous in-plane strain rotation induced by 109° ferroelastic domain switching in the (001)-cut PMN-PT substrate.展开更多
How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model mus...How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model must first be constructed and then solved by programming.Obviously, this method is not very practical. This paper,therefore, proposes a new way of approach with a new method using 3- D animation for the solving of coupling relations in the 6 - DOF parallel robot. This method is much simpler and its solving accuracy approaches that of the more complicated analytic method.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374010 and 11434009the Fundamental Research Funds for the Central Universities
文摘Using in situ electric-field-modulated anisotropic magnetoresistance measurement, a large reversible and non- volatile in-plane rotation of magnetic easy axis of -35° between the positive and negative electrical poling states is demonstrated in C040Fe40B20//(001)-cut Pb(Mgl/3Nb2/3)O3-25PbTiO3 (PMN-PT). The specific magneto- electric coupling mechanism therein is experimentally verified to be related to the synchronous in-plane strain rotation induced by 109° ferroelastic domain switching in the (001)-cut PMN-PT substrate.
文摘How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model must first be constructed and then solved by programming.Obviously, this method is not very practical. This paper,therefore, proposes a new way of approach with a new method using 3- D animation for the solving of coupling relations in the 6 - DOF parallel robot. This method is much simpler and its solving accuracy approaches that of the more complicated analytic method.