Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurat...Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.展开更多
This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A tota...This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A total of 41 male patients who presented with 2 of the following symptoms,i.e.,daytime sleepiness and fatigue,frequent snoring,and apnea with witness,were diagnosed as having OSAHS.They underwent full-night polysomnography and then dynamic 3-D CT imaging of the upper airway during quiet breathing and in Muller's maneuver.The soft palate length(SPL),the minimal cross-sectional area of the retropalatal region(mXSA-RP),and the vertical distance from the hard palate to the upper posterior part of the hyoid(hhL) were compared between the two breathing states.These parameters,together with hard palate length(HPL),were also compared between mild/moderate and severe OSAHS groups.Association of these parameters with the severity of OSAHS [as reflected by apnea hypopnea index(AHI) and the lowest saturation of blood oxygen(LSaO2)] was examined.The results showed that 31 patients had severe OSAHS,and 10 mild/moderate OSAHS.All the patients had airway obstruction at soft palate level.mXSA-RP was significantly decreased and SPL remarkably increased during Muller's maneuver as compared with the quiet breathing state.There were no significant differences in these airway parameters(except the position of the hyoid bone) between severe and mild/moderate OSAHS groups.And no significant correlation between these airway parameters and the severity of OSAHS was found.The position of hyoid was lower in the severe OSAHS group than in the mild/moderate OSAHS group.The patients in group with body mass index(BMI)≥26 had higher collapse ratio of mXSA-RP,greater neck circumference and smaller mXSA-RP in the Muller's maneuver than those in group with BMI26(P0.05 for all).It was concluded that dynamic 3-D CT imaging could dynamically show the upper airway changes at soft palate level in OSAHS patients.All the OSAHS patients had airway obstruction of various degrees at soft palate level.But no correlation was observed between the airway change at soft palate level and the severity of OSAHS.The patients in group with BMI≥26 were more likely to develop airway obstruction at soft palate level than those with BMI26.展开更多
Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed t...Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[^18F]-fluoro-2-deoxy-D-glucose (^18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[^18F]-fluorothymidine (^18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the ^18F-FDG was greater than the ratio using 18F-FLT (P 〈 0.05). The Ki-67 expression showed a significant positive correlation with the ^18F-FLT binding ratio (r = 0.824, P〈 0.01). The tumor-to-nontumor uptake ratio of ^18F-FDG imaging in xenografts was higher than that of ^18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of ^18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of ^18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of ^18F-FDG and ^18F-FLT (r = 0.658, P〈 0.05 and r = 0.724, P〈 0.01, respectively). Conclusions: The ^18F-FDG uptake ratio is higher than that of ^18F-FLT in A549 cells at the cellular level.^18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor tissue and could distinguish lung cancer nodules from other SPNs.展开更多
基金Acknowledgements The authors gratefully acknowledge the financial support from the State Key Research Development Program of China (Grant No. 2016YFC0600705), the National Natural Science Foundation of China (Grant Nos. 51674251, 51727807, 51374213), the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 51125017), the Fund for Creative Research and Development Group Program of Jiangsu Province (Grant No. 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD2014), and an open project sponsored by the State Key Labo- ratory for Geomechanics and Deep Underground Engineering (Grant SKLGDUE K1318) for their financial support.
文摘Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.
文摘This study examined the dynamic characteristics of upper airway collapse at soft palate level in patients with obstructive sleep apnea/hypopnea syndrome(OSAHS) by using dynamic 3-Dimensional(3-D) CT imaging.A total of 41 male patients who presented with 2 of the following symptoms,i.e.,daytime sleepiness and fatigue,frequent snoring,and apnea with witness,were diagnosed as having OSAHS.They underwent full-night polysomnography and then dynamic 3-D CT imaging of the upper airway during quiet breathing and in Muller's maneuver.The soft palate length(SPL),the minimal cross-sectional area of the retropalatal region(mXSA-RP),and the vertical distance from the hard palate to the upper posterior part of the hyoid(hhL) were compared between the two breathing states.These parameters,together with hard palate length(HPL),were also compared between mild/moderate and severe OSAHS groups.Association of these parameters with the severity of OSAHS [as reflected by apnea hypopnea index(AHI) and the lowest saturation of blood oxygen(LSaO2)] was examined.The results showed that 31 patients had severe OSAHS,and 10 mild/moderate OSAHS.All the patients had airway obstruction at soft palate level.mXSA-RP was significantly decreased and SPL remarkably increased during Muller's maneuver as compared with the quiet breathing state.There were no significant differences in these airway parameters(except the position of the hyoid bone) between severe and mild/moderate OSAHS groups.And no significant correlation between these airway parameters and the severity of OSAHS was found.The position of hyoid was lower in the severe OSAHS group than in the mild/moderate OSAHS group.The patients in group with body mass index(BMI)≥26 had higher collapse ratio of mXSA-RP,greater neck circumference and smaller mXSA-RP in the Muller's maneuver than those in group with BMI26(P0.05 for all).It was concluded that dynamic 3-D CT imaging could dynamically show the upper airway changes at soft palate level in OSAHS patients.All the OSAHS patients had airway obstruction of various degrees at soft palate level.But no correlation was observed between the airway change at soft palate level and the severity of OSAHS.The patients in group with BMI≥26 were more likely to develop airway obstruction at soft palate level than those with BMI26.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81271607), and the National Postdoctoral Science Foundation of China (No. 2015M572810).
文摘Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[^18F]-fluoro-2-deoxy-D-glucose (^18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[^18F]-fluorothymidine (^18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the ^18F-FDG was greater than the ratio using 18F-FLT (P 〈 0.05). The Ki-67 expression showed a significant positive correlation with the ^18F-FLT binding ratio (r = 0.824, P〈 0.01). The tumor-to-nontumor uptake ratio of ^18F-FDG imaging in xenografts was higher than that of ^18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of ^18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of ^18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of ^18F-FDG and ^18F-FLT (r = 0.658, P〈 0.05 and r = 0.724, P〈 0.01, respectively). Conclusions: The ^18F-FDG uptake ratio is higher than that of ^18F-FLT in A549 cells at the cellular level.^18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor tissue and could distinguish lung cancer nodules from other SPNs.