Understanding the location of the subsurface heat sources is crucial for efficient geothermal resource exploration and exploitation. This study aimed to investigate the faults and the depth to heat sources for a geoth...Understanding the location of the subsurface heat sources is crucial for efficient geothermal resource exploration and exploitation. This study aimed to investigate the faults and the depth to heat sources for a geothermal system in Magadi, southern Rift Valley, through the integration of gravity mapping, 3D Euler deconvolution, and spectral analysis. Gravity mapping is a powerful geophysical method widely used to infer subsurface density variations, which are indicative of geological structures and volcanic intrusions that can be potential heat sources. The Volcano-Tectonic and Fluvial-Deltaic Sedimentation process of the Kenyan rift which encompasses the Magadi basin are responsible for geomorphic and geologic processes in the area. Alkali lava sheets of Magadi plateau trachytes covered with lacustrine sediments characterize 80% of the area. Deeper is the Tanzanian craton basement, overlain by Pliocene to Miocene volcanic and sedimentary rocks. A gravity survey with a data density of 2.375 stations/km<sup>2</sup> produced high-resolution anomaly and total horizontal derivative maps showing gravity highs between −180 mGals to −174 mGals along the eastern zone of the study area. A buried major fault trending N-S was delineated in the mid-upper region of the area by Euler solutions at an average depth of 350 meters. Deeper features associated with possible volcanic dykes and sills gave Euler depth ranges of 0.7 km to 2.2 km. Radial average spectral analysis showed depth to the top of shallow and deep features at 2.4694 km and 5.827 km respectively. The correlation between gravity anomalies, geological structures, and present hot springs supports the hypothesis that volcanic processes have played a significant role in the development of the geothermal system in the study area.展开更多
The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The ...The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.展开更多
文摘Understanding the location of the subsurface heat sources is crucial for efficient geothermal resource exploration and exploitation. This study aimed to investigate the faults and the depth to heat sources for a geothermal system in Magadi, southern Rift Valley, through the integration of gravity mapping, 3D Euler deconvolution, and spectral analysis. Gravity mapping is a powerful geophysical method widely used to infer subsurface density variations, which are indicative of geological structures and volcanic intrusions that can be potential heat sources. The Volcano-Tectonic and Fluvial-Deltaic Sedimentation process of the Kenyan rift which encompasses the Magadi basin are responsible for geomorphic and geologic processes in the area. Alkali lava sheets of Magadi plateau trachytes covered with lacustrine sediments characterize 80% of the area. Deeper is the Tanzanian craton basement, overlain by Pliocene to Miocene volcanic and sedimentary rocks. A gravity survey with a data density of 2.375 stations/km<sup>2</sup> produced high-resolution anomaly and total horizontal derivative maps showing gravity highs between −180 mGals to −174 mGals along the eastern zone of the study area. A buried major fault trending N-S was delineated in the mid-upper region of the area by Euler solutions at an average depth of 350 meters. Deeper features associated with possible volcanic dykes and sills gave Euler depth ranges of 0.7 km to 2.2 km. Radial average spectral analysis showed depth to the top of shallow and deep features at 2.4694 km and 5.827 km respectively. The correlation between gravity anomalies, geological structures, and present hot springs supports the hypothesis that volcanic processes have played a significant role in the development of the geothermal system in the study area.
文摘The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.