Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of...Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.展开更多
Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The...Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.展开更多
多段正弦信号频谱融合法(简称"原融合算法")是提高低信噪比条件下正弦信号频率估计精度的一条有效途径,具有重要研究意义和应用价值。为满足雷达、声纳、电子对抗等实时性要求较高的频率估计应用需求,提出多段正弦信号快速频...多段正弦信号频谱融合法(简称"原融合算法")是提高低信噪比条件下正弦信号频率估计精度的一条有效途径,具有重要研究意义和应用价值。为满足雷达、声纳、电子对抗等实时性要求较高的频率估计应用需求,提出多段正弦信号快速频谱融合算法。该方法通过设计离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)快速算法、降维处理加权融合频谱矩阵和1/3主瓣相关性分析处理等措施来降低算法计算量,提高实时性。重点对上述三项措施的原理进行了阐述与分析。计算量对比和仿真实验表明,多段正弦信号快速频谱融合算法在精度损失极小的前提下,能够大幅降低计算量;在信噪比极低的情况下(SNR≤-13 dB),其性能略优于原融合算法。展开更多
文摘Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
文摘Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.
文摘多段正弦信号频谱融合法(简称"原融合算法")是提高低信噪比条件下正弦信号频率估计精度的一条有效途径,具有重要研究意义和应用价值。为满足雷达、声纳、电子对抗等实时性要求较高的频率估计应用需求,提出多段正弦信号快速频谱融合算法。该方法通过设计离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)快速算法、降维处理加权融合频谱矩阵和1/3主瓣相关性分析处理等措施来降低算法计算量,提高实时性。重点对上述三项措施的原理进行了阐述与分析。计算量对比和仿真实验表明,多段正弦信号快速频谱融合算法在精度损失极小的前提下,能够大幅降低计算量;在信噪比极低的情况下(SNR≤-13 dB),其性能略优于原融合算法。