It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration o...It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.展开更多
The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discreti- zations for solving 3...The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discreti- zations for solving 3-D boundary element models, which provide much needed flexibility in the bound- ary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.展开更多
基金supported by the National Natural Science Foundation of China (No. 61573181)the Civil Aviation Joint Fund Key Projects of National Natural Science Foundation of China (No.U1333202)
文摘It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.
文摘The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discreti- zations for solving 3-D boundary element models, which provide much needed flexibility in the bound- ary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.