A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The...A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The RWMEF-coil has two turns, which may produce stochastic fields with the toroidal mode number of n = 1 or 3. In this study, it is found that the stochastic field of n = 3 is larger than that of n=-1 for the same coil current. Two divertor discharges with lower single null ( LSN ) and double null ( DN ) configurations in the NSTX have been modeled with different RWMEF-coil currents and toroidal modes.展开更多
Transient magnetic circuit method is adopted to calculate the power loss in winding and shading coil. Based on the analysis of heat transfer process in AC contactor, a thermal model is proposed and the temperature fie...Transient magnetic circuit method is adopted to calculate the power loss in winding and shading coil. Based on the analysis of heat transfer process in AC contactor, a thermal model is proposed and the temperature field distribution is simulated with 3-D FEM of ANSYS. Comparison of simulation results with measurements shows that the proposed method is effective.展开更多
文摘A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The RWMEF-coil has two turns, which may produce stochastic fields with the toroidal mode number of n = 1 or 3. In this study, it is found that the stochastic field of n = 3 is larger than that of n=-1 for the same coil current. Two divertor discharges with lower single null ( LSN ) and double null ( DN ) configurations in the NSTX have been modeled with different RWMEF-coil currents and toroidal modes.
文摘Transient magnetic circuit method is adopted to calculate the power loss in winding and shading coil. Based on the analysis of heat transfer process in AC contactor, a thermal model is proposed and the temperature field distribution is simulated with 3-D FEM of ANSYS. Comparison of simulation results with measurements shows that the proposed method is effective.