Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for com...Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for complex underground models in a three-dimensional(3-D)numerical simulation of a geothermal fi eld,a mixed space-wavenumber domain 3-D numerical simulation algorithm is proposed in this paper.According to the superposition principle of temperature field,the geothermal field is decomposed into background and abnormal temperature fi elds for calculation.The uniform layered model is used to solve the background field.When the abnormal field is solved,the horizontal two-dimensional(2-D)Fourier transform is used to transform the 3-D diff erential equation satisfi ed by an abnormal field into a series of one-dimensional ordinary differential equations with diff erent wavenumbers,which greatly reduces the calculation and storage.The unit division of an ordinary diff erential equation is fl exible,and the calculation amount is small.The algorithm fully takes advantage of the effi ciency of the Fourier transform and the quickness of the catch-up method to solve linear equations with a fixed bandwidth,which effectively improves the computational efficiency.Compared with the COMSOL Multiphysics professional simulation finite element software,the time consumption and memory requirements of the algorithm proposed in this paper are reduced by multiple orders of magnitude in terms of ensuring accuracy and the same mesh division.The more the number of calculated nodes is,the more obvious is the advantage.We design models to study the thermal conductivity,heat fl ux boundary,regional tectonic morphology,and topographic relief of the geothermal fi eld distribution.A 3-D geophysical model is developed based on topographic elevation data,geothermal geology,and geophysical exploration data in the Qiabuqia area of Gonghe Basin,Qinghai Province,China.Numerical simulation of the geothermal fi eld in this area is realized,which shows that the algorithm is suitable for precise and effi cient simulation of an arbitrary complex terrain and geological conditions.展开更多
A mathematical model of obstacle limit surfaces for military airfield obstacle free space is established through airfield obstacle free space analysis.Based on the model,triangle mesh elevation model of military airfi...A mathematical model of obstacle limit surfaces for military airfield obstacle free space is established through airfield obstacle free space analysis.Based on the model,triangle mesh elevation model of military airfield obstacle free space is built by using the software-ArcGIS,and the 3-D display result is obtained.It is convenient to evaluate military airfield obstacle for superimposing digital elevation model(DEM)with military airfield topographic map.Thus it improves the efficiency greatly.It lays the foundation for the application of geographic information systems(GIS)in the management of military airfield obstacle free space.展开更多
The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical...The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical method, respectively. An ellipse assumption for the cross-section of yarn was proposed in this analysis method with considering the yarn size and yarn-packing factor. Two types of local unit cell structures were identified for 4-step braided composites by considering the nature of the braiding processes and by observing the sample cross-sections. The relationship between the braiding procedure and the properties for 3-D braided structural shapes was established. This method provides the basis for analyzing stiffness and strength of 3-D braided composites.展开更多
We propose a novel 3-dimensional hollow waveguide with a variable air core for widely tunable devices.We observed a wavelength shift of 1.8 nm in a hollow waveguide resonator with a displacement of 6μm in an air core.
The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line ...The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line searching algorithm based upon the geometric representation of lines (for non-maneuvering targets in space) in a 3-D space is derived. The convergency of the algorithm is proved. An analysis is performed of the theoretical detection performance of the algorithm. The statistical experiment results show high effectiveness and computational efficiency of the algorithm in the case of low SNR. The idea may be employed to satisfy the real-time processing requirement of an IR system.展开更多
The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, e...The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, edge-:edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valuable viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.展开更多
基金supported by National Natural Science Foundation of China (No. 41574127, 42174080)Innovation research team project of Guangxi Natural Science Foundation (No. GXNSFGA380004)Central South University independent exploration and innovation project for Postgraduates (Nos. 2021zzts0831, 2021zzts0271)
文摘Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for complex underground models in a three-dimensional(3-D)numerical simulation of a geothermal fi eld,a mixed space-wavenumber domain 3-D numerical simulation algorithm is proposed in this paper.According to the superposition principle of temperature field,the geothermal field is decomposed into background and abnormal temperature fi elds for calculation.The uniform layered model is used to solve the background field.When the abnormal field is solved,the horizontal two-dimensional(2-D)Fourier transform is used to transform the 3-D diff erential equation satisfi ed by an abnormal field into a series of one-dimensional ordinary differential equations with diff erent wavenumbers,which greatly reduces the calculation and storage.The unit division of an ordinary diff erential equation is fl exible,and the calculation amount is small.The algorithm fully takes advantage of the effi ciency of the Fourier transform and the quickness of the catch-up method to solve linear equations with a fixed bandwidth,which effectively improves the computational efficiency.Compared with the COMSOL Multiphysics professional simulation finite element software,the time consumption and memory requirements of the algorithm proposed in this paper are reduced by multiple orders of magnitude in terms of ensuring accuracy and the same mesh division.The more the number of calculated nodes is,the more obvious is the advantage.We design models to study the thermal conductivity,heat fl ux boundary,regional tectonic morphology,and topographic relief of the geothermal fi eld distribution.A 3-D geophysical model is developed based on topographic elevation data,geothermal geology,and geophysical exploration data in the Qiabuqia area of Gonghe Basin,Qinghai Province,China.Numerical simulation of the geothermal fi eld in this area is realized,which shows that the algorithm is suitable for precise and effi cient simulation of an arbitrary complex terrain and geological conditions.
基金Supported by the Science Research Foundation of Air Force Logistics Department(KJYZ09019)~~
文摘A mathematical model of obstacle limit surfaces for military airfield obstacle free space is established through airfield obstacle free space analysis.Based on the model,triangle mesh elevation model of military airfield obstacle free space is built by using the software-ArcGIS,and the 3-D display result is obtained.It is convenient to evaluate military airfield obstacle for superimposing digital elevation model(DEM)with military airfield topographic map.Thus it improves the efficiency greatly.It lays the foundation for the application of geographic information systems(GIS)in the management of military airfield obstacle free space.
基金Aeronautical Science Foundation of China ( 99B2 3 0 0 1)
文摘The yarn architecture of 3-D braided composites products by the four-step 1×1 braiding technique has been studied by means of a control volume method in conjunction with experimental investigation and a numerical method, respectively. An ellipse assumption for the cross-section of yarn was proposed in this analysis method with considering the yarn size and yarn-packing factor. Two types of local unit cell structures were identified for 4-step braided composites by considering the nature of the braiding processes and by observing the sample cross-sections. The relationship between the braiding procedure and the properties for 3-D braided structural shapes was established. This method provides the basis for analyzing stiffness and strength of 3-D braided composites.
文摘We propose a novel 3-dimensional hollow waveguide with a variable air core for widely tunable devices.We observed a wavelength shift of 1.8 nm in a hollow waveguide resonator with a displacement of 6μm in an air core.
文摘The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line searching algorithm based upon the geometric representation of lines (for non-maneuvering targets in space) in a 3-D space is derived. The convergency of the algorithm is proved. An analysis is performed of the theoretical detection performance of the algorithm. The statistical experiment results show high effectiveness and computational efficiency of the algorithm in the case of low SNR. The idea may be employed to satisfy the real-time processing requirement of an IR system.
基金Supported by the National Natural Science Foundation of China (No.60502013)by the National High-Tech Research and Development(863) Program of China(No.2006AA01Z115)
文摘The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, edge-:edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valuable viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.