Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting a...Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas.展开更多
A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity m...A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity model and earthquake relocation for this region are obtained using Pg and Sg phase readings of 9 988 earthquakes from 1992 to 1999 recorded at 193 seismic stations within central-western China by SPHYPIT90 and SPHREL3D90 programs. A lateral inhomogeneous structure of P-wave velocity in this region was obtained. Ob-vious contrast of P-wave velocities was revealed on both sides of active fault zones. Relocated epicenters of 6 459 events show clear lineation along active faults, which indicated a close correlation between seismicity and the active faults in this region. Focal depths of 82% relocated events ranged from 0 to 20 km, which is in good agreement with that from double-difference earthquake location algorithm.展开更多
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ...The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.展开更多
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter...Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.展开更多
In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Netwo...In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.展开更多
3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied...3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.展开更多
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background o...The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity.展开更多
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were...Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography. The results from these two tomography methods have similar characteristics for P- and S-wave velocity structures in crust and upper mantle. They show that there are remarkable low velocity zones in the upper crust of Lhasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau. These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.展开更多
The Middle-Lower Yangtze River is a typical transition region between the nearly NW-oriented Tethys and NE-trending Pacific tectonic regimes.Structures of different periods and directions overlap strongly during these...The Middle-Lower Yangtze River is a typical transition region between the nearly NW-oriented Tethys and NE-trending Pacific tectonic regimes.Structures of different periods and directions overlap strongly during these processes.The NE-trending Yangtze River compound structural belt and NW-trending Tongling-Hangzhou structural belt both control the magmatic activities and distributions of the metallogenic belts in the area.Here,we obtain 3-D high-resolution isotropic and azimuthally anisotropic velocity structures at depths of 1–10 km using the first arrivals from airgun sources.The velocity maps correspond well with the tectonic structures,with high-velocity anomalies distributed in ore-concentrated districts and low-velocity anomalies distributed along the Yangtze River.The fast directions are generally consistent with the fault strike,indicating that the azimuthal anisotropy is mainly dominated by the fault and fracture trends in the upper crust.The complicated fast directions near the Luzong and Tongling ore deposits reveal complex deformations in the upper crust,which are mainly caused by the intersection of the Yangtze River compound and Tongling-Hangzhou structural belts.The magma intrusion beneath the two ore deposits(Luzong and Tongling)are connected at depths of 5–10 km.展开更多
On August 8,2017,a magnitude 7.0 earthquake occurred in Jiuzhaigou County,Sichuan Province,China.The deep seismogenic environment and potential seismic risk in the eastern margin of Tibetan Plateau have once again att...On August 8,2017,a magnitude 7.0 earthquake occurred in Jiuzhaigou County,Sichuan Province,China.The deep seismogenic environment and potential seismic risk in the eastern margin of Tibetan Plateau have once again attracted the close attention of seismologists and scholars at home and abroad.The post-earthquake scientific investigation could not identify noticeable surface rupture zones in the affected area;the complex tectonic background and the reason(s)for the frequent seismicity in the Jiuzhaigou earthquake region are unclear.In order to reveal the characteristics of the deep medium and the seismogenic environment of the M7.0 Jiuzhaigou earthquake region,and to interpret the tectonic background and genesis of the seismicity comprehensively,in this paper,we have reviewed all available observation data recorded by the regional digital seismic networks and large-scale,dense mobile seismic array(China Array)for the northern section of the North-South Seismic Belt around Jiuzhaigou earthquake region.Using double-difference seismic tomography method to invert the three-dimensional P-wave velocity structure characteristics of the upper crust around the Jiuzhaigou earthquake region,we have analyzed and discussed such scientific questions as the relationship between the velocity structure characteristics and seismicity in the Jiuzhaigou earthquake region,its deep tectonic environment,and the ongoing seismic risk in this region.We report that:the P-wave velocity structure of the upper crust around the Jiuzhaigoug earthquake region exhibits obvious lateral inhomogeneity;the distribution characteristics of the shallow P-wave velocity structure are closely related to surface geological structure and formation lithology;the M7.0 Jiuzhaigou earthquake sequence is closely related to the velocity structure of the upper crust;the mainshock of the M7.0 earthquake occurred in the upper crust;the inhomogeneous variation of the velocity structure of the Jiuzhaigou earthquake area and its surrounding medium appears to be the deep structural factor controlling the spatial distribution of the mainshock and its sequence.The 3D P-wave velocity structure also suggests that the crustal low-velocity layer of northeastern SGB(Songpan-GarzêBlock)stretches into MSM(Minshan Mountain),and migrates to the northeast,but the tendency to emerge as a shallow layer is impeded by the high-velocity zone of Nanping Nappe tectonics and the Bikou Block.Our results reveal an uneven distribution of high-and low-velocity structures around the Tazang segment of the East Kunlun fault zone.Given that the rupture caused by the Jiuzhaigou earthquake has enhanced the stress fields at both ends of the seismogenic fault,it is very important to stay vigilant to possible seismic hazards in the large seismic gap at the Maqu-Maqên segment of the East Kunlun fault zone.展开更多
The model of Dabieshan crustal structure has been obtained on the basis of the deep seismic sounding data in thisarea. The 2-D crustal structure shows the feature of the collision orogens and provides some deep geophy...The model of Dabieshan crustal structure has been obtained on the basis of the deep seismic sounding data in thisarea. The 2-D crustal structure shows the feature of the collision orogens and provides some deep geophysicalevidences of the ultra-high pressure (UHP) metamorphic belt. The 3-D upper-crustal velocity struCture reveals thatthe velocity distribution at 2 km deep obviously relates to the surface geological setting and the UHP metarnorphicbelt has the higher velocity at 5~10 km deep. The observed data of Bouguer gravity anomalies reveal a largerrange of negative anomalies in Dabieshan area while the positive anomalies in the UHP metamorphic belt is calculated from the 3-D upper-crustal velocity structure. The 2-D crustal model along the seismic profile shows thatthe 'root' beneath the orogen is only 4-5 km thick and the velocity in the uppermost mantle changes a little in thelateral direction. The inconsistency between the observed and calculated Bouguer gravity anomalies mainly resultsfrom the crust, and at least the middle-upper crust should yield the negative anomalies. The material density of thecrust in the UHP metamorphic belt should be lower than that in the surrounding areas. This material with lowerdensity relates to the collision processes in which Yangtze crust subducted nor'thward to 100 km deep and thenreturned to the crust.展开更多
A 3-D P-wave velocity model is developed for the crust and uppermost mantle of Caucasus and the surrounding area by applying the tomographic method of Zhao et al. using 300 000 high-quality P-wave first arrivals from ...A 3-D P-wave velocity model is developed for the crust and uppermost mantle of Caucasus and the surrounding area by applying the tomographic method of Zhao et al. using 300 000 high-quality P-wave first arrivals from 43 000 events between 1964 and 2005. This tomographic method can accommodate velocity discontinuities such as the Moho in addition to smooth velocity variations. The spatial resolution is 1°× 1° in the horizontal direction and 10 km in depth. The velocity images of the upper crust correspond well with the surface geology. Beneath the southern Caucasus high velocity anomalies are found in the middle crust and low velocity anomalies are found in the uppermost mantle. Relatively low Pn velocities are located under the Lesser Caucasus, eastern Turkey, and northern Iran. Higher Pn velocities occur under the eastern portion of the Black Sea and the southern Caspian Sea, and also extend into the eastern edge of Azerbaijan. Tomographic model significantly reduces the travel-time residuals.展开更多
Lithosphere thinning and destruction in the middle-eastern North China Craton(NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflect...Lithosphere thinning and destruction in the middle-eastern North China Craton(NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflection/refraction profiles have been completed in the middle-eastern NCC. We collect all the 2-D profiling results and perform gridding of the velocity and interface depth data, building a 3-D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, by using the Kriging interpolation method. Our result shows that the first-arrival times calculated by HBCust1.0 fit well with the observations. The result demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C(the interface between upper and lower crust). The depth of interface Moho varies beneath the source area of the Tangshan earthquake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin(NCB) in the east of the craton is obviously higher than the regional average. This high-velocity probably results from long-term underplating of the mantle magma.展开更多
By processing the CSND Rayleigh wave data with the matched filter FTAN technique, Rayleigh wave dispersion for southeast China is obtained. The 4°×4°S wave dispersion of the pure path is calculated usin...By processing the CSND Rayleigh wave data with the matched filter FTAN technique, Rayleigh wave dispersion for southeast China is obtained. The 4°×4°S wave dispersion of the pure path is calculated using random inversion scheme, and 3-D S wave velocity structure is set up. Incorporating the above-mentioned results with wide angle seismic sounding data, we studied structure framework and the extending of faults in this area, which demonstrates that the depth of Moho in South China varies from 30 to 40 km, shallower from west to east. The depth of Moho varies from 25 to 28 km for the offshore. The depth of the asthenosphere in upper mantle varies from 60 to 100 km. The depth difference of layers at the two sides of Tanlu fault is more than 10 km at the south part of the Yangtze River, and the fault extends downward more than 170 km. The fault exceeds the main land at Hainan Island and slips into the southern China Sea. Both Tanlu fault and the huge bend of gravity gradient anomaly are influenced by展开更多
We use 146 422 P-wave arrival times from 6 347 local earthquakes recorded by the Southern California SeismicNetwork to determine a detailed three-dimensional P-wave velocity structure at 0~35 km depth. We have takeni...We use 146 422 P-wave arrival times from 6 347 local earthquakes recorded by the Southern California SeismicNetwork to determine a detailed three-dimensional P-wave velocity structure at 0~35 km depth. We have takeninto account the Moho depth variations, which were obtained by seismological methods. Checkerboard tests sug-gest that our inversion results are reliable. Our models provide new information on regional geological structuresof Southern California. At shallow depths P-wave velocity structure correlates with surface geological features andexpresses well variations of surface topography of the mountains and basins. The velocity structure at each layer ischaracterized by block structures bounded by large faults. Ventura Basin, Los Angeles Basin, Mojave Desert, Pen-insular Ranges, San Joaquin Valley, Sierra Nevada, and Salton Trough show respectively all-round block. SanAndreas Fault becomes an obvious boundary of the region. To its southwest, the velocity is higher, and there arestrong heterogeneity and deeper seismicity; but to its northeast, the velocity is lower and shows less variation thanto the southwest, the seismicity is shallower. To investigate the effect of the Moho geometry we conducted inver-sions for two cases: one for flat Moho geometry, another for a Moho with lateral depth variations. We found thatthe topography of the Moho greatly affects the velocity structure of the middle and lower crust. When the Mohotopography is considered, a more reasonable tomographic result can be obtained and the resulting 3-D velocitymodel fits the data better.展开更多
It is highly needed to develop an effective method to test the reliability of the 3-D stratified velocity structure of the earth’s crust and upper mantle obtained by using the seismic tomography (ST) and to make full...It is highly needed to develop an effective method to test the reliability of the 3-D stratified velocity structure of the earth’s crust and upper mantle obtained by using the seismic tomography (ST) and to make full use of the ST results. In this note, a new method named stratified gravity anomaly (SGA) is presented. It not only can provide the stratified gravity effect of different layers in the earth’s interior but also can be used to test the results of the seismic tomography. Here, the research is mainly concentrated展开更多
The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a tra...The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone.All the P-wave arrival times are picked automatically with Akaike information criterion,and then checked man-machine interactively by short-receiver geometry.The database for local active-source tomographic in-version involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts.Checker-board tests aimed at checking the reliability of the obtained velocity models are presented.The result-ing Vp distribution slices show a complicated 3-D structure beneath this area and offer a better under-standing of three well-defined mineral deposits.Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits.Based on features of metallic ores we attempt to delimit their distributions and stretched directions.展开更多
基金supported by China National Special Fund for Earthquake Scientific Research in Public Interest (Grant 201208004)National Natural Science Foundation of China (grant 41174040)Scientific Research Institutes’ Basic Research and Development Operations Special Fund of Institute of Geophysics,China Earthquake Administration (grant DQJB10A01)
文摘Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas.
文摘A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity model and earthquake relocation for this region are obtained using Pg and Sg phase readings of 9 988 earthquakes from 1992 to 1999 recorded at 193 seismic stations within central-western China by SPHYPIT90 and SPHREL3D90 programs. A lateral inhomogeneous structure of P-wave velocity in this region was obtained. Ob-vious contrast of P-wave velocities was revealed on both sides of active fault zones. Relocated epicenters of 6 459 events show clear lineation along active faults, which indicated a close correlation between seismicity and the active faults in this region. Focal depths of 82% relocated events ranged from 0 to 20 km, which is in good agreement with that from double-difference earthquake location algorithm.
基金National Natural Science Foundation of China (40074010) and Natural Science Foundation of Gansu Province(ZS981-A25-011).
文摘The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.
基金Foundation item: National Scientific and Technological Development Program (95-973-02-02) the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China and the State Natural Sciences Foundation of China (49874021).
文摘Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
基金funded by grants from the Key Project of the National Natural Science Foundation of China(No.41630320)the National Key Research and Development Program of China(No.2016YFC0600200)the Hefei Postdoctoral Science Foundation。
文摘In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.
基金State Natural Science Foundation of China (49734150).
文摘3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.
基金supported by China earthquake scientific array exploration Southern section of North South seismic belt(201008001)Northern section of North South seismic belt(20130811)+1 种基金National Natural Science Foundation of China(41474057)Science for Earthquake Resllience of China Earthquake Administration(XH15040Y)
文摘The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity.
文摘Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography. The results from these two tomography methods have similar characteristics for P- and S-wave velocity structures in crust and upper mantle. They show that there are remarkable low velocity zones in the upper crust of Lhasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau. These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.
基金This work is supported by National Natural Science Foundation of China(Nos.41790464 and 42004034).
文摘The Middle-Lower Yangtze River is a typical transition region between the nearly NW-oriented Tethys and NE-trending Pacific tectonic regimes.Structures of different periods and directions overlap strongly during these processes.The NE-trending Yangtze River compound structural belt and NW-trending Tongling-Hangzhou structural belt both control the magmatic activities and distributions of the metallogenic belts in the area.Here,we obtain 3-D high-resolution isotropic and azimuthally anisotropic velocity structures at depths of 1–10 km using the first arrivals from airgun sources.The velocity maps correspond well with the tectonic structures,with high-velocity anomalies distributed in ore-concentrated districts and low-velocity anomalies distributed along the Yangtze River.The fast directions are generally consistent with the fault strike,indicating that the azimuthal anisotropy is mainly dominated by the fault and fracture trends in the upper crust.The complicated fast directions near the Luzong and Tongling ore deposits reveal complex deformations in the upper crust,which are mainly caused by the intersection of the Yangtze River compound and Tongling-Hangzhou structural belts.The magma intrusion beneath the two ore deposits(Luzong and Tongling)are connected at depths of 5–10 km.
基金This research was supported by the National Natural Science Foundation of China(No.41974066,No.41474057)ChinArray Project-Northern Section of South-North Seismic Belt(201308011)+1 种基金Project of Science for Earthquake Resilience(XH20051)the Science and Technology Innovation Fund of Sichuan Earthquake Administration(201804).
文摘On August 8,2017,a magnitude 7.0 earthquake occurred in Jiuzhaigou County,Sichuan Province,China.The deep seismogenic environment and potential seismic risk in the eastern margin of Tibetan Plateau have once again attracted the close attention of seismologists and scholars at home and abroad.The post-earthquake scientific investigation could not identify noticeable surface rupture zones in the affected area;the complex tectonic background and the reason(s)for the frequent seismicity in the Jiuzhaigou earthquake region are unclear.In order to reveal the characteristics of the deep medium and the seismogenic environment of the M7.0 Jiuzhaigou earthquake region,and to interpret the tectonic background and genesis of the seismicity comprehensively,in this paper,we have reviewed all available observation data recorded by the regional digital seismic networks and large-scale,dense mobile seismic array(China Array)for the northern section of the North-South Seismic Belt around Jiuzhaigou earthquake region.Using double-difference seismic tomography method to invert the three-dimensional P-wave velocity structure characteristics of the upper crust around the Jiuzhaigou earthquake region,we have analyzed and discussed such scientific questions as the relationship between the velocity structure characteristics and seismicity in the Jiuzhaigou earthquake region,its deep tectonic environment,and the ongoing seismic risk in this region.We report that:the P-wave velocity structure of the upper crust around the Jiuzhaigoug earthquake region exhibits obvious lateral inhomogeneity;the distribution characteristics of the shallow P-wave velocity structure are closely related to surface geological structure and formation lithology;the M7.0 Jiuzhaigou earthquake sequence is closely related to the velocity structure of the upper crust;the mainshock of the M7.0 earthquake occurred in the upper crust;the inhomogeneous variation of the velocity structure of the Jiuzhaigou earthquake area and its surrounding medium appears to be the deep structural factor controlling the spatial distribution of the mainshock and its sequence.The 3D P-wave velocity structure also suggests that the crustal low-velocity layer of northeastern SGB(Songpan-GarzêBlock)stretches into MSM(Minshan Mountain),and migrates to the northeast,but the tendency to emerge as a shallow layer is impeded by the high-velocity zone of Nanping Nappe tectonics and the Bikou Block.Our results reveal an uneven distribution of high-and low-velocity structures around the Tazang segment of the East Kunlun fault zone.Given that the rupture caused by the Jiuzhaigou earthquake has enhanced the stress fields at both ends of the seismogenic fault,it is very important to stay vigilant to possible seismic hazards in the large seismic gap at the Maqu-Maqên segment of the East Kunlun fault zone.
文摘The model of Dabieshan crustal structure has been obtained on the basis of the deep seismic sounding data in thisarea. The 2-D crustal structure shows the feature of the collision orogens and provides some deep geophysicalevidences of the ultra-high pressure (UHP) metamorphic belt. The 3-D upper-crustal velocity struCture reveals thatthe velocity distribution at 2 km deep obviously relates to the surface geological setting and the UHP metarnorphicbelt has the higher velocity at 5~10 km deep. The observed data of Bouguer gravity anomalies reveal a largerrange of negative anomalies in Dabieshan area while the positive anomalies in the UHP metamorphic belt is calculated from the 3-D upper-crustal velocity structure. The 2-D crustal model along the seismic profile shows thatthe 'root' beneath the orogen is only 4-5 km thick and the velocity in the uppermost mantle changes a little in thelateral direction. The inconsistency between the observed and calculated Bouguer gravity anomalies mainly resultsfrom the crust, and at least the middle-upper crust should yield the negative anomalies. The material density of thecrust in the UHP metamorphic belt should be lower than that in the surrounding areas. This material with lowerdensity relates to the collision processes in which Yangtze crust subducted nor'thward to 100 km deep and thenreturned to the crust.
基金financially supported by the Defense Threat Reduction Agency under Contract Nos DE-AC-52-04NA25612,NNSA-03-2S2, W-7405-ENG-483supported by CAS fund KJCX2-EW-121
文摘A 3-D P-wave velocity model is developed for the crust and uppermost mantle of Caucasus and the surrounding area by applying the tomographic method of Zhao et al. using 300 000 high-quality P-wave first arrivals from 43 000 events between 1964 and 2005. This tomographic method can accommodate velocity discontinuities such as the Moho in addition to smooth velocity variations. The spatial resolution is 1°× 1° in the horizontal direction and 10 km in depth. The velocity images of the upper crust correspond well with the surface geology. Beneath the southern Caucasus high velocity anomalies are found in the middle crust and low velocity anomalies are found in the uppermost mantle. Relatively low Pn velocities are located under the Lesser Caucasus, eastern Turkey, and northern Iran. Higher Pn velocities occur under the eastern portion of the Black Sea and the southern Caspian Sea, and also extend into the eastern edge of Azerbaijan. Tomographic model significantly reduces the travel-time residuals.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90814012, 91014006, 91414301, 41174052 & 41274113)
文摘Lithosphere thinning and destruction in the middle-eastern North China Craton(NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflection/refraction profiles have been completed in the middle-eastern NCC. We collect all the 2-D profiling results and perform gridding of the velocity and interface depth data, building a 3-D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, by using the Kriging interpolation method. Our result shows that the first-arrival times calculated by HBCust1.0 fit well with the observations. The result demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C(the interface between upper and lower crust). The depth of interface Moho varies beneath the source area of the Tangshan earthquake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin(NCB) in the east of the craton is obviously higher than the regional average. This high-velocity probably results from long-term underplating of the mantle magma.
基金the "95" Key Project (Grant No. KZ2952-51-410) from the Chinese Academy of Sciences and a project from the National Natural Science Foundation of China.
文摘By processing the CSND Rayleigh wave data with the matched filter FTAN technique, Rayleigh wave dispersion for southeast China is obtained. The 4°×4°S wave dispersion of the pure path is calculated using random inversion scheme, and 3-D S wave velocity structure is set up. Incorporating the above-mentioned results with wide angle seismic sounding data, we studied structure framework and the extending of faults in this area, which demonstrates that the depth of Moho in South China varies from 30 to 40 km, shallower from west to east. The depth of Moho varies from 25 to 28 km for the offshore. The depth of the asthenosphere in upper mantle varies from 60 to 100 km. The depth difference of layers at the two sides of Tanlu fault is more than 10 km at the south part of the Yangtze River, and the fault extends downward more than 170 km. The fault exceeds the main land at Hainan Island and slips into the southern China Sea. Both Tanlu fault and the huge bend of gravity gradient anomaly are influenced by
基金Japan Society for Promotion of Science,Chinese State Key Program of Basic Research on Mechanisms and Predictions of Strong Continental Earthquakes
文摘We use 146 422 P-wave arrival times from 6 347 local earthquakes recorded by the Southern California SeismicNetwork to determine a detailed three-dimensional P-wave velocity structure at 0~35 km depth. We have takeninto account the Moho depth variations, which were obtained by seismological methods. Checkerboard tests sug-gest that our inversion results are reliable. Our models provide new information on regional geological structuresof Southern California. At shallow depths P-wave velocity structure correlates with surface geological features andexpresses well variations of surface topography of the mountains and basins. The velocity structure at each layer ischaracterized by block structures bounded by large faults. Ventura Basin, Los Angeles Basin, Mojave Desert, Pen-insular Ranges, San Joaquin Valley, Sierra Nevada, and Salton Trough show respectively all-round block. SanAndreas Fault becomes an obvious boundary of the region. To its southwest, the velocity is higher, and there arestrong heterogeneity and deeper seismicity; but to its northeast, the velocity is lower and shows less variation thanto the southwest, the seismicity is shallower. To investigate the effect of the Moho geometry we conducted inver-sions for two cases: one for flat Moho geometry, another for a Moho with lateral depth variations. We found thatthe topography of the Moho greatly affects the velocity structure of the middle and lower crust. When the Mohotopography is considered, a more reasonable tomographic result can be obtained and the resulting 3-D velocitymodel fits the data better.
基金Project supported by the National Natural Science Foundation of China.
文摘It is highly needed to develop an effective method to test the reliability of the 3-D stratified velocity structure of the earth’s crust and upper mantle obtained by using the seismic tomography (ST) and to make full use of the ST results. In this note, a new method named stratified gravity anomaly (SGA) is presented. It not only can provide the stratified gravity effect of different layers in the earth’s interior but also can be used to test the results of the seismic tomography. Here, the research is mainly concentrated
基金supported by the National Natural Science Foundation of China (No. 40730317)National Basic Research Program of China (No. 2007CB411300)
文摘The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone.All the P-wave arrival times are picked automatically with Akaike information criterion,and then checked man-machine interactively by short-receiver geometry.The database for local active-source tomographic in-version involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts.Checker-board tests aimed at checking the reliability of the obtained velocity models are presented.The result-ing Vp distribution slices show a complicated 3-D structure beneath this area and offer a better under-standing of three well-defined mineral deposits.Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits.Based on features of metallic ores we attempt to delimit their distributions and stretched directions.