Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D informa...Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.展开更多
Two new recognition methods for the spatial planar POlygon using perspective invariants are presented. The corss-ratio (R c) of a vetex and the co-base area rotio (RA) of a edge in a spatial planar polygon are propose...Two new recognition methods for the spatial planar POlygon using perspective invariants are presented. The corss-ratio (R c) of a vetex and the co-base area rotio (RA) of a edge in a spatial planar polygon are proposed and used as the invariant primitive of the recognition eigenvector. The second distance error decision rule (SD EDR) estimating the relative error of RA is introduced also too. The mthods could recognize a spatial planar polygon with an arbitrary orientation through only a single perspective view. Experimental examples are gievn.展开更多
Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach fo...Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.展开更多
To achieve accurate classification and recognition of ship target types,it is necessary to establish a sample library of ship targets to be identified.On the basis of exploring the principles of building a ship target...To achieve accurate classification and recognition of ship target types,it is necessary to establish a sample library of ship targets to be identified.On the basis of exploring the principles of building a ship target image library,the paper determines the sample set.Using 3DS MAX software as the platform,combined with the accurate 3D model of the ship in an offline state,the software fully utilizes its own rendering and animation functions to achieve the automatic generation of multi-view and multi-scale views of ship targets.To reduce the storage capacity of the image database,a construction method of the ship target image database based on the AP algorithm is presented.The algorithm can obtain the optimal cluster number,reduce the data storage capacity of the image database,and save the calculation amount for the subsequent matching calculation.展开更多
The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line ...The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line searching algorithm based upon the geometric representation of lines (for non-maneuvering targets in space) in a 3-D space is derived. The convergency of the algorithm is proved. An analysis is performed of the theoretical detection performance of the algorithm. The statistical experiment results show high effectiveness and computational efficiency of the algorithm in the case of low SNR. The idea may be employed to satisfy the real-time processing requirement of an IR system.展开更多
The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, e...The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, edge-:edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valuable viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.展开更多
The recognition of 3-D objects is quite a difficult task for computer vision systems.This paper presents a new object framework,which utilizes densely sampled grids with different resolutions to represent the local in...The recognition of 3-D objects is quite a difficult task for computer vision systems.This paper presents a new object framework,which utilizes densely sampled grids with different resolutions to represent the local information of the input image.A Markov random field model is then created to model the geometric distribution of the object key nodes.Flexible matching,which aims to find the accurate correspondence map between the key points of two images,is performed by combining the local similarities and the geometric relations together using the highest confidence first method.Afterwards,a global similarity is calculated for object recognition.Experimental results on Coil-100 object database,which consists of 7200 images of 100 objects,are presented.When the numbers of templates vary from 4,8,18 to 36 for each object,and the remaining images compose the test sets,the object recognition rates are 95.75%,99.30%,100.0%and 100.0%,respectively.The excellent recognition performance is much better than those of the other cited references,which indicates that our approach is well-suited for appearance-based object recognition.展开更多
N^6-methyladenosine(m6A),a ubiquitous RNA modification,is installed by METTL3-METTL14 complex.The structure of the heterodimeric complex between the methyltransferase domains(MTDs)of METTL3 and METTL14 has been previo...N^6-methyladenosine(m6A),a ubiquitous RNA modification,is installed by METTL3-METTL14 complex.The structure of the heterodimeric complex between the methyltransferase domains(MTDs)of METTL3 and METTL14 has been previously determined.However,the MTDs alone possess no enzymatic activity.Here we present the solution structure for the zinc finger domain(ZFD)of METTL3,the inclusion of which fulfills the methyltransferase activity of METTL3-METTL14.We show that the ZFD specifically binds to an RNA containing 5'-GGACU-3'consensus sequence,but does not to one without.The ZFD thus serves as the target recognition domain,a structural feature previously shown for DNA methyltransferases,and cooperates with the MTDs of METTL3-METTL14 for catalysis.However,the interaction between the ZFD and the specific RNA is extremely weak,with the binding affinity at several hundred micromolar under physiological conditions.The ZFD contains two CCCH-type zinc fingers connected by an anti-parallel P-sheet.Mutational analysis and NMR titrations have mapped the functional interface to a contiguous surface.As a division of labor,the RNA-binding interface comprises basic residues from zinc finger 1 and hydrophobic residues fromβ-sheet and zinc finger 2.Further we show that the linker between the ZFD and MTD of METTL3 is flexible but partially folded,which may permit the cooperation between the two domains during catalysis.Together,the structural characterization of METTL3 ZFD paves the way to elucidate the atomic details of the entire process of RNA m6A modification.展开更多
This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite s...This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite simple formulation that consists of a PN component for target capture and a coordination component for simultaneous arrival.The centralized algorithms come into effect when the global information of time-to-go estimation is obtained, whereas the decentralized algorithms have better performance when each missile can only collect information from neighbors.Numerical simulations demonstrate that the proposed coordination algorithms are feasible to perform the cooperative engagement of multiple missiles against both stationary and maneuvering targets.The effectiveness of the 3-D guidance laws is also discussed.展开更多
基金This research was supported by National Natural Science Foundation of China(No.61271353,61871389)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09).
文摘Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.
文摘Two new recognition methods for the spatial planar POlygon using perspective invariants are presented. The corss-ratio (R c) of a vetex and the co-base area rotio (RA) of a edge in a spatial planar polygon are proposed and used as the invariant primitive of the recognition eigenvector. The second distance error decision rule (SD EDR) estimating the relative error of RA is introduced also too. The mthods could recognize a spatial planar polygon with an arbitrary orientation through only a single perspective view. Experimental examples are gievn.
基金Supported by the Ministerial Level Advanced Research Foundation(9140A01010411BQ01)the National Twelfth Five-Year Project(40405050303)
文摘Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.
文摘To achieve accurate classification and recognition of ship target types,it is necessary to establish a sample library of ship targets to be identified.On the basis of exploring the principles of building a ship target image library,the paper determines the sample set.Using 3DS MAX software as the platform,combined with the accurate 3D model of the ship in an offline state,the software fully utilizes its own rendering and animation functions to achieve the automatic generation of multi-view and multi-scale views of ship targets.To reduce the storage capacity of the image database,a construction method of the ship target image database based on the AP algorithm is presented.The algorithm can obtain the optimal cluster number,reduce the data storage capacity of the image database,and save the calculation amount for the subsequent matching calculation.
文摘The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line searching algorithm based upon the geometric representation of lines (for non-maneuvering targets in space) in a 3-D space is derived. The convergency of the algorithm is proved. An analysis is performed of the theoretical detection performance of the algorithm. The statistical experiment results show high effectiveness and computational efficiency of the algorithm in the case of low SNR. The idea may be employed to satisfy the real-time processing requirement of an IR system.
基金Supported by the National Natural Science Foundation of China (No.60502013)by the National High-Tech Research and Development(863) Program of China(No.2006AA01Z115)
文摘The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, edge-:edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valuable viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.
文摘The recognition of 3-D objects is quite a difficult task for computer vision systems.This paper presents a new object framework,which utilizes densely sampled grids with different resolutions to represent the local information of the input image.A Markov random field model is then created to model the geometric distribution of the object key nodes.Flexible matching,which aims to find the accurate correspondence map between the key points of two images,is performed by combining the local similarities and the geometric relations together using the highest confidence first method.Afterwards,a global similarity is calculated for object recognition.Experimental results on Coil-100 object database,which consists of 7200 images of 100 objects,are presented.When the numbers of templates vary from 4,8,18 to 36 for each object,and the remaining images compose the test sets,the object recognition rates are 95.75%,99.30%,100.0%and 100.0%,respectively.The excellent recognition performance is much better than those of the other cited references,which indicates that our approach is well-suited for appearance-based object recognition.
文摘N^6-methyladenosine(m6A),a ubiquitous RNA modification,is installed by METTL3-METTL14 complex.The structure of the heterodimeric complex between the methyltransferase domains(MTDs)of METTL3 and METTL14 has been previously determined.However,the MTDs alone possess no enzymatic activity.Here we present the solution structure for the zinc finger domain(ZFD)of METTL3,the inclusion of which fulfills the methyltransferase activity of METTL3-METTL14.We show that the ZFD specifically binds to an RNA containing 5'-GGACU-3'consensus sequence,but does not to one without.The ZFD thus serves as the target recognition domain,a structural feature previously shown for DNA methyltransferases,and cooperates with the MTDs of METTL3-METTL14 for catalysis.However,the interaction between the ZFD and the specific RNA is extremely weak,with the binding affinity at several hundred micromolar under physiological conditions.The ZFD contains two CCCH-type zinc fingers connected by an anti-parallel P-sheet.Mutational analysis and NMR titrations have mapped the functional interface to a contiguous surface.As a division of labor,the RNA-binding interface comprises basic residues from zinc finger 1 and hydrophobic residues fromβ-sheet and zinc finger 2.Further we show that the linker between the ZFD and MTD of METTL3 is flexible but partially folded,which may permit the cooperation between the two domains during catalysis.Together,the structural characterization of METTL3 ZFD paves the way to elucidate the atomic details of the entire process of RNA m6A modification.
基金supported by the National Natural Science Foundation of China (Nos.61273349, 61203223)
文摘This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite simple formulation that consists of a PN component for target capture and a coordination component for simultaneous arrival.The centralized algorithms come into effect when the global information of time-to-go estimation is obtained, whereas the decentralized algorithms have better performance when each missile can only collect information from neighbors.Numerical simulations demonstrate that the proposed coordination algorithms are feasible to perform the cooperative engagement of multiple missiles against both stationary and maneuvering targets.The effectiveness of the 3-D guidance laws is also discussed.