The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly ...The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly unsteady, generating vortices and requiring detailed analysis of fluid-structure interactions.An understanding of the complexities of such flows is of interest to engineers developing vehicles capable of high dynamic performance in their propulsion and maneuvering.In the present study, a CFD based RANS simulation of a 3-D fin body moving in a viscous fluid was developed.It investigated hydrodynamic performance by evaluating the hydrodynamic coefficients (lift, drag and moment) at two different oscillating frequencies.A parametric analysis of the factors that affect the hydrodynamic performance of the fin body was done, along with a comparison of results from experiments.The results of the simulation were found in close agreement with experimental results and this validated the simulation as an effective tool for evaluation of the unsteady hydrodynamic coefficients of 3-D fins.This work can be further be used for analysis of the stability and maneuverability of fin actuated underwater vehicles.展开更多
In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since...In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.展开更多
A three-dimensional viscous code has been developed to solve Reynolds-averaged Navier-Stokes equations. The governing equations in finite volume form are solved by two-step Runge-Kutta scheme with implicit residual sm...A three-dimensional viscous code has been developed to solve Reynolds-averaged Navier-Stokes equations. The governing equations in finite volume form are solved by two-step Runge-Kutta scheme with implicit residual smoothing. The eddy viscous is obtained using the Baldwin-Lomax model. A prediction of the 3-D turbulent flow and the performance in the “all-over controlled vortex distribution” centrifugal impeller with a vaneless diffuser has been made for the compressor at design and off-design condition. The predicted effi-ciency is a little higher than the experiment data. These results suggest that the present calculation code is able to determine the flow development in the impeller and also the turbulence model in the centrifugal im-peller should be improved.展开更多
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of...Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.展开更多
Three-dimension isothermal flows of polymer melt in the kneading blocks of triangularly-arranged and parallelly-arranged intermeshing co-rotating three-screw extruders are simulated using the finite element package PO...Three-dimension isothermal flows of polymer melt in the kneading blocks of triangularly-arranged and parallelly-arranged intermeshing co-rotating three-screw extruders are simulated using the finite element package POLYFLOW. Based on the velocity fields calculated, the particle trajectories in both machines are visualized using particle tracking technique. The numerical results indicate that the flow patterns in three-screw extruders are similar to those in twin-screw extruders. The triangularly-arranged three-screw extruder has the largest pumping capacity and also the highest extrusion stability in terms of flowrate fluctuation with screw rotation. The instantaneous mixing and cumulative residence time distribution (RTD) characteristics are also analyzed and compared with traditional intermeshing co-rotating twin-screw extruders. It is shown that the start section of the cumulative RTD curve for the triangularly-arranged machine has a small shoulder, which is attributed to the faster flow in the central region of this type of extruder.展开更多
Viscous heating has a substantial influence on the extrusion forming process and product quality of powder materials.This study selected the MUZL420 ring die pellet mill as the research object,from which a 3D flow phy...Viscous heating has a substantial influence on the extrusion forming process and product quality of powder materials.This study selected the MUZL420 ring die pellet mill as the research object,from which a 3D flow physical model was established.The numerical simulation of 3D nonisothermal flow in the extrusion pelletizing process of granulated alfalfa was performed with POLYFLOW.The distribution laws of pressure,velocity,shear rate,viscosity,viscous heating and temperature in the flow field were revealed to thoroughly investigate the pelletizing process and provide a reference for structural optimization and process control.The results showed that two extrusion zones in the pelleting chamber were symmetrical with respect to the center,and the significant pressure gradient along the rotating direction of the ring die and the roller caused the material to flow back in the opposite direction.There were larger velocity gradients,shear rates and viscous heating levels in the deformation and compaction zone,the negative pressure zone behind the extrusion zone and the die holes.The distribution of viscosity was opposite to that of the shear rate.The temperature increase area caused by viscous heating gradually expanded from the material inlet to the bottom of the extrusion chamber along the Z-axis direction,and the temperature increased accordingly.The extrusion force and the forming temperature in the extrusion forming zone were captured in the numerical simulation.The extrusion forming density was calculated with the regression prediction model established through the simulation experiment of pelletizing with a ring die.Through a comparison with the results of mean alfalfa pellet density from the ring die pellet mill experiment,the relative error was less than 5%,which indicated that the numerical simulation method was reliable.展开更多
In this article,the anaglyph video maker is employed for generating realistic 3-D flows and the software FlowAnimator is developed using that technology.Based on Microsoft Windows Presentation Foundation(WPF),the re...In this article,the anaglyph video maker is employed for generating realistic 3-D flows and the software FlowAnimator is developed using that technology.Based on Microsoft Windows Presentation Foundation(WPF),the real 3-D scene is set up and marker particles are distributed in it randomly in order to create a more natural flow scenario.The trajectory of the particle motion is calculated with Lagrangian description in 3-D space.During the simulation,the viewport can be changed in order to focus on different parts of the model by panning,zooming,rotating and inclination variation etc.Marker particles may appear in different shapes:spheres,tracking-balls,cylinders and ribbons in order to fit different flows.It is the first time that the video anaglyph technology is employed in the 3-D hydrodynamic simulation,which removes the obstacles for 3-D scenes to be rendered on a flat-panel display.展开更多
Based on the understanding of the mechanism of energy dissipation,a new type of plunge pool is presented with the advantages of high rate of energy dissipation,low impact pressure,and small close-to-bed velocity on th...Based on the understanding of the mechanism of energy dissipation,a new type of plunge pool is presented with the advantages of high rate of energy dissipation,low impact pressure,and small close-to-bed velocity on the soleplate of the plunge pool.The first advantage owes to enlarged shearing energy dissipation areas in the plunge pool,while the other two are caused by the jet that enters in a nearly horizontal level to keep the soleplate from being scoured directly.All of the above arrangements make this new type of energy dissipator distinct from the underflow energy dissipation.Through experiments on the physical model,the authors found that the water flow maintained stable and submerged in horizontal direction when the flow was narrow in horizontal but thick in vertical direction.However,the wide flat nappe was ready to submerge or float as the downstream water level rised or dropped.The entire flow fields of multi-horizontal submerged jets into plunge pool were also numerically simulated.The numerical results of water surface curve,close-to-bed velocity and floor pressure agree well with the experimental data.The flow pattern in the plunge pool was analyzed after combining the laboratory data and numerical simulation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50879014
文摘The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly unsteady, generating vortices and requiring detailed analysis of fluid-structure interactions.An understanding of the complexities of such flows is of interest to engineers developing vehicles capable of high dynamic performance in their propulsion and maneuvering.In the present study, a CFD based RANS simulation of a 3-D fin body moving in a viscous fluid was developed.It investigated hydrodynamic performance by evaluating the hydrodynamic coefficients (lift, drag and moment) at two different oscillating frequencies.A parametric analysis of the factors that affect the hydrodynamic performance of the fin body was done, along with a comparison of results from experiments.The results of the simulation were found in close agreement with experimental results and this validated the simulation as an effective tool for evaluation of the unsteady hydrodynamic coefficients of 3-D fins.This work can be further be used for analysis of the stability and maneuverability of fin actuated underwater vehicles.
文摘In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.
文摘A three-dimensional viscous code has been developed to solve Reynolds-averaged Navier-Stokes equations. The governing equations in finite volume form are solved by two-step Runge-Kutta scheme with implicit residual smoothing. The eddy viscous is obtained using the Baldwin-Lomax model. A prediction of the 3-D turbulent flow and the performance in the “all-over controlled vortex distribution” centrifugal impeller with a vaneless diffuser has been made for the compressor at design and off-design condition. The predicted effi-ciency is a little higher than the experiment data. These results suggest that the present calculation code is able to determine the flow development in the impeller and also the turbulence model in the centrifugal im-peller should be improved.
基金Project(51375498)supported by the National Natural Science Foundation of China
文摘Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.
文摘Three-dimension isothermal flows of polymer melt in the kneading blocks of triangularly-arranged and parallelly-arranged intermeshing co-rotating three-screw extruders are simulated using the finite element package POLYFLOW. Based on the velocity fields calculated, the particle trajectories in both machines are visualized using particle tracking technique. The numerical results indicate that the flow patterns in three-screw extruders are similar to those in twin-screw extruders. The triangularly-arranged three-screw extruder has the largest pumping capacity and also the highest extrusion stability in terms of flowrate fluctuation with screw rotation. The instantaneous mixing and cumulative residence time distribution (RTD) characteristics are also analyzed and compared with traditional intermeshing co-rotating twin-screw extruders. It is shown that the start section of the cumulative RTD curve for the triangularly-arranged machine has a small shoulder, which is attributed to the faster flow in the central region of this type of extruder.
基金funded by the National Natural Science Foundation of China(NSFC)(51365002)the Gansu Agricultural University Youth Tutor Foundation(GAUQNDS-201204).
文摘Viscous heating has a substantial influence on the extrusion forming process and product quality of powder materials.This study selected the MUZL420 ring die pellet mill as the research object,from which a 3D flow physical model was established.The numerical simulation of 3D nonisothermal flow in the extrusion pelletizing process of granulated alfalfa was performed with POLYFLOW.The distribution laws of pressure,velocity,shear rate,viscosity,viscous heating and temperature in the flow field were revealed to thoroughly investigate the pelletizing process and provide a reference for structural optimization and process control.The results showed that two extrusion zones in the pelleting chamber were symmetrical with respect to the center,and the significant pressure gradient along the rotating direction of the ring die and the roller caused the material to flow back in the opposite direction.There were larger velocity gradients,shear rates and viscous heating levels in the deformation and compaction zone,the negative pressure zone behind the extrusion zone and the die holes.The distribution of viscosity was opposite to that of the shear rate.The temperature increase area caused by viscous heating gradually expanded from the material inlet to the bottom of the extrusion chamber along the Z-axis direction,and the temperature increased accordingly.The extrusion force and the forming temperature in the extrusion forming zone were captured in the numerical simulation.The extrusion forming density was calculated with the regression prediction model established through the simulation experiment of pelletizing with a ring die.Through a comparison with the results of mean alfalfa pellet density from the ring die pellet mill experiment,the relative error was less than 5%,which indicated that the numerical simulation method was reliable.
文摘In this article,the anaglyph video maker is employed for generating realistic 3-D flows and the software FlowAnimator is developed using that technology.Based on Microsoft Windows Presentation Foundation(WPF),the real 3-D scene is set up and marker particles are distributed in it randomly in order to create a more natural flow scenario.The trajectory of the particle motion is calculated with Lagrangian description in 3-D space.During the simulation,the viewport can be changed in order to focus on different parts of the model by panning,zooming,rotating and inclination variation etc.Marker particles may appear in different shapes:spheres,tracking-balls,cylinders and ribbons in order to fit different flows.It is the first time that the video anaglyph technology is employed in the 3-D hydrodynamic simulation,which removes the obstacles for 3-D scenes to be rendered on a flat-panel display.
基金the United Research Foundation of the National Natural Science Foundation of China(Grant Nos.50539060and50709020)"973"Project of China(Grant No.2007CB714105)
文摘Based on the understanding of the mechanism of energy dissipation,a new type of plunge pool is presented with the advantages of high rate of energy dissipation,low impact pressure,and small close-to-bed velocity on the soleplate of the plunge pool.The first advantage owes to enlarged shearing energy dissipation areas in the plunge pool,while the other two are caused by the jet that enters in a nearly horizontal level to keep the soleplate from being scoured directly.All of the above arrangements make this new type of energy dissipator distinct from the underflow energy dissipation.Through experiments on the physical model,the authors found that the water flow maintained stable and submerged in horizontal direction when the flow was narrow in horizontal but thick in vertical direction.However,the wide flat nappe was ready to submerge or float as the downstream water level rised or dropped.The entire flow fields of multi-horizontal submerged jets into plunge pool were also numerically simulated.The numerical results of water surface curve,close-to-bed velocity and floor pressure agree well with the experimental data.The flow pattern in the plunge pool was analyzed after combining the laboratory data and numerical simulation.