Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance co...Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance could only be harvested at a relatively low mass-loading via the traditional electrode fabrication process,and the scale of these materials into commercial-level mass-loading remains a daunting challenge because the ion diffusion kinetics deteriorates rapidly along with the increased thickness of the electrodes.Very recently,three-dimensional(3D)printing,a promising additive manufacturing technology,has been considered as an emerging method to address the aforementioned issues where the 3D printed electrodes could possess elaborately regulated architectures and rationally organized porosity.As a result,the outstanding electrochemical performance has been widely observed in energy storage devices made of 3D printed electrodes of high-mass loading.In this review,we systemically introduce the basic working principles of various 3D printing technologies and their practical applications to manufacture highmass loading electrodes for energy storage devices.Challenges and perspectives in 3D printing technologies for the construction of electrodes at the current stage are also outlined,aiming to offer some useful opinions for further development for this prosperous field.展开更多
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M672166National Natural Science Foundation of China,Grant/Award Numbers:21975287,52002401+4 种基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2018ZC1458Taishan Scholar Project of Shandong Province,Grant/Award Number:ts201712020Technological Leading Scholar of 10000 Talent Project,Grant/Award Number:W03020508Shandong Postdoctoral Program for Innovation Talents,Grant/Award Number:sdbX20190032Postdoctoral Applied Research Project of Qingdao,Grant/Award Number:qdyy20110014。
文摘Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance could only be harvested at a relatively low mass-loading via the traditional electrode fabrication process,and the scale of these materials into commercial-level mass-loading remains a daunting challenge because the ion diffusion kinetics deteriorates rapidly along with the increased thickness of the electrodes.Very recently,three-dimensional(3D)printing,a promising additive manufacturing technology,has been considered as an emerging method to address the aforementioned issues where the 3D printed electrodes could possess elaborately regulated architectures and rationally organized porosity.As a result,the outstanding electrochemical performance has been widely observed in energy storage devices made of 3D printed electrodes of high-mass loading.In this review,we systemically introduce the basic working principles of various 3D printing technologies and their practical applications to manufacture highmass loading electrodes for energy storage devices.Challenges and perspectives in 3D printing technologies for the construction of electrodes at the current stage are also outlined,aiming to offer some useful opinions for further development for this prosperous field.