AIM: To obtain the active human recombinant uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) enzyme from Chinese hamster lung (CHL) cells.METHODS: The full-length UGT1A3 gene was amplified by reverse transcrip...AIM: To obtain the active human recombinant uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) enzyme from Chinese hamster lung (CHL) cells.METHODS: The full-length UGT1A3 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR)using total RNA from human liver as template. The correct fragment confirmed by sequencing was subcloned into the mammalian expression vector pcDNA3.1 (+), and the recombinant vector was transfected into CHL cells using a calcium phosphate method. Expressed UGT1A3 protein was prepared from CHL cells resistant to neomycin (G418). Then the protein was added into a reaction mixture for glucuronidation of quercetin. The glucuronidation activity of UGT1A3 was determined by reverse phase-high performance liquid chromatography (RP-HPLC) coupled with a diode array detector (DAD). The quercetin glucuronide was confirmed by hydrolysis with β-glucuronidase. Control experiments were performed in parallel. The transcriptions of recombinants were also determined by RT-PCR.RESULTS: The gene was confirmed to be an allele (UGT1A3-3) of UGT1A3 by DNA sequencing. The fragment was introduced into pcDNA3.1 (+) successfully. Several colonies were obtained under the selection pressure of G418.The result of RT-PCR showed transcription of recombinants in mRNA level. Glucuronidation assay and HPLC analysis indicated UGT1A3 expressed heterologously in CHL cells was in an active form, and one of the gulcuronides corresponding to quercetin was also detected.CONCLUSION: Correct sequence of UGT1A3 gene can be obtained, and active UGT1A3 enzyme is expressed heterologously in CHL cells.展开更多
Objective: To study the effect of fructose 1,6-diphosphate(FDP) on myocardial ischemia reperfusion injury in rats and its molecular mechanism.Methods: Male SPF SD rats were selected as experimental animals and randoml...Objective: To study the effect of fructose 1,6-diphosphate(FDP) on myocardial ischemia reperfusion injury in rats and its molecular mechanism.Methods: Male SPF SD rats were selected as experimental animals and randomly divided into four groups.Sham group received sham operation, I/R group were made into myocardial ischemia reperfusion injury models, FDP group were made into myocardial ischemia reperfusion injury models and then were given FDP intervention, and FDP+AG490 group were made into myocardial ischemia reperfusion injury models and then were given FDP and JAK2 inhibitor AG490 intervention.Results: CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of I/R group were significantly higher than those of Sham group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissues were significantly lower than those of Sham group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP group were significantly lower than those of I/R group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissue were significantly higher than those of I/R group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP+AG490 group were significantly higher than those of FDP group whereas Bcl-2 protein expression in myocardial tissue was significantly lower than that of FDP group.Conclusion: FDP could reduce the myocardial ischemia reperfusion injury in rats by activating the JAK2/STAT3 pathway.展开更多
The 4-hydroxy-3-methylbut-2-enyl diphosphate reductase(HDR) is the last step key enzyme of the methylerythritol phosphate(MEP) pathway,synthesizing isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphat...The 4-hydroxy-3-methylbut-2-enyl diphosphate reductase(HDR) is the last step key enzyme of the methylerythritol phosphate(MEP) pathway,synthesizing isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate,which is important for regulation of isoprenoid biosynthesis.Here the full-length cDNA of HDR,designated TwHDR(GenBank Accession No.KJ933412.1),was isolated from Tripterygium wilfordii for the first time.TwHDR has an open reading frame(ORF) of 1386 bp encoding461 amino acids.TwHDR exhibits high homology with HDRs of other plants,with an N-terminal conserved domain and three conserved cysteine residues.TwHDR cDNA was cloned into an expression vector and transformed into an Escherichia coli hdr mutant.Since loss-of-function E.coli hdr mutant is lethal,the result showed that transformation of TwHDR cDNA rescued the E.coli hdr mutant.This complementation assay suggests that the TwHDR cDNA encodes a functional HDR enzyme.The expression of TwHDR was induced by methyl-jasmonate(MJ) in T.wilfordii suspension cells.The expression of TwHDR reached the highest level after 1 h of MJ treatment.These results indicate that we have identified a functional TwHDR enzyme,which may play a pivotal role in the biosynthesis of diterpenoid triptolide in T.wilfordii.展开更多
Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture ...Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-repeffusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.展开更多
Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic ...Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.展开更多
Malaria is a disease that has drawn worldwide attention due to the alarming rise of mortality rates particularly in third world countries. During the Plasmodium parasite intraerythrocytic life cycle, metabolic process...Malaria is a disease that has drawn worldwide attention due to the alarming rise of mortality rates particularly in third world countries. During the Plasmodium parasite intraerythrocytic life cycle, metabolic processes include the formation of hemozoin or malaria pigment. This pigment functions in the prevention of oxygen radical-mediated damage to the parasite. Drugs targeting hemozoin formation such as chloroquine and amodaquine are effective and are still used, but recently Plasmodium parasites have become resistant to these drugs, especially against chloroquine. In this study we looked at the potential use of two heterocyclic pyrimidine derivatives as anti-malaria drugs; 2,4-Diamino-6-Mercaptopyrimidine (DAMP) and 2-Mercaptopyrimidine (2-MP). These compounds bear various coordination sites that enable them to react with metal ions to form coordination compounds. We used two methods for testing the inhibition of ferriprotoporphyrin IX (FP) biomineralisation: semi-quantitative microassay used by Deharo, and a quantitative assay used by G. Blaner and M. Akkawi. We report here the finding that (DAMP) has an in vitro inhibitory effect on I%hematin formation at concentrations and magnitude of nearly similar order to that of chloroquine, 2-MP was found to be effective but to a lower degree than DAMP.展开更多
Lactococcus lactis is an important food-grade microorganism that has been successfully applied as a starter to increase the level of 3-methylbutanal produced during the ripening of cheese.Three variants of branched-ch...Lactococcus lactis is an important food-grade microorganism that has been successfully applied as a starter to increase the level of 3-methylbutanal produced during the ripening of cheese.Three variants of branched-chain α-keto acid decarboxylase (KADC) were discovered in L.lactis strains with different 3-methylbutanal production abilities.Three genes encoding KADCs of varying lengths (KADC-long,KADC-middle,and KADC-short) were cloned and heterologously expressed into Escherichia coli.KADC activity was only detected in the E.coli cloned with the KADC-long-encoding gene.Homology modeling of the three KADC recombination proteins showed that an active-site residue (Glu462) and an S-pocket structure were necessary for the ability to catalyze substrates.KADC-long showed maximum activity at pH 7.0 and 30 ℃.The substrate hydrolysis and kinetic parameters demonstrated that KADC-long efficiently produces 2-methylbutanal and 3-methylbutanal.The heterologous expression of the full-length kdcA in low-3-methylbutanal-yield L.lactis strains increased their production yields.The results of this study demonstrate the function of the complete KADC in 3-methylbutanal production.展开更多
基金Supported by the National Natural Science Foundation of China,No. C30100232to Xin Li,No.C30225047to Su Zeng,and the Zhejiang Provincial Natural Science Foundation,No.C300487to Xin Li
文摘AIM: To obtain the active human recombinant uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) enzyme from Chinese hamster lung (CHL) cells.METHODS: The full-length UGT1A3 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR)using total RNA from human liver as template. The correct fragment confirmed by sequencing was subcloned into the mammalian expression vector pcDNA3.1 (+), and the recombinant vector was transfected into CHL cells using a calcium phosphate method. Expressed UGT1A3 protein was prepared from CHL cells resistant to neomycin (G418). Then the protein was added into a reaction mixture for glucuronidation of quercetin. The glucuronidation activity of UGT1A3 was determined by reverse phase-high performance liquid chromatography (RP-HPLC) coupled with a diode array detector (DAD). The quercetin glucuronide was confirmed by hydrolysis with β-glucuronidase. Control experiments were performed in parallel. The transcriptions of recombinants were also determined by RT-PCR.RESULTS: The gene was confirmed to be an allele (UGT1A3-3) of UGT1A3 by DNA sequencing. The fragment was introduced into pcDNA3.1 (+) successfully. Several colonies were obtained under the selection pressure of G418.The result of RT-PCR showed transcription of recombinants in mRNA level. Glucuronidation assay and HPLC analysis indicated UGT1A3 expressed heterologously in CHL cells was in an active form, and one of the gulcuronides corresponding to quercetin was also detected.CONCLUSION: Correct sequence of UGT1A3 gene can be obtained, and active UGT1A3 enzyme is expressed heterologously in CHL cells.
基金supported by Fenghua Science and Technology Bureau(No.B02162715)
文摘Objective: To study the effect of fructose 1,6-diphosphate(FDP) on myocardial ischemia reperfusion injury in rats and its molecular mechanism.Methods: Male SPF SD rats were selected as experimental animals and randomly divided into four groups.Sham group received sham operation, I/R group were made into myocardial ischemia reperfusion injury models, FDP group were made into myocardial ischemia reperfusion injury models and then were given FDP intervention, and FDP+AG490 group were made into myocardial ischemia reperfusion injury models and then were given FDP and JAK2 inhibitor AG490 intervention.Results: CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of I/R group were significantly higher than those of Sham group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissues were significantly lower than those of Sham group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP group were significantly lower than those of I/R group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissue were significantly higher than those of I/R group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP+AG490 group were significantly higher than those of FDP group whereas Bcl-2 protein expression in myocardial tissue was significantly lower than that of FDP group.Conclusion: FDP could reduce the myocardial ischemia reperfusion injury in rats by activating the JAK2/STAT3 pathway.
基金supported by the National Natural Science Foundation of China(Nos.81422053 and 81373906 to Wei Gao,and No.81325023 to Luqi Huang)the National High Technology Research and Development Program of China(863 Program,No.2015AA0200908)
文摘The 4-hydroxy-3-methylbut-2-enyl diphosphate reductase(HDR) is the last step key enzyme of the methylerythritol phosphate(MEP) pathway,synthesizing isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate,which is important for regulation of isoprenoid biosynthesis.Here the full-length cDNA of HDR,designated TwHDR(GenBank Accession No.KJ933412.1),was isolated from Tripterygium wilfordii for the first time.TwHDR has an open reading frame(ORF) of 1386 bp encoding461 amino acids.TwHDR exhibits high homology with HDRs of other plants,with an N-terminal conserved domain and three conserved cysteine residues.TwHDR cDNA was cloned into an expression vector and transformed into an Escherichia coli hdr mutant.Since loss-of-function E.coli hdr mutant is lethal,the result showed that transformation of TwHDR cDNA rescued the E.coli hdr mutant.This complementation assay suggests that the TwHDR cDNA encodes a functional HDR enzyme.The expression of TwHDR was induced by methyl-jasmonate(MJ) in T.wilfordii suspension cells.The expression of TwHDR reached the highest level after 1 h of MJ treatment.These results indicate that we have identified a functional TwHDR enzyme,which may play a pivotal role in the biosynthesis of diterpenoid triptolide in T.wilfordii.
基金supported by the National Natural Science Foundation of China, No. 81160157the Key Program of the Science and Technology Department of Guizhou Province, No. SY20093075Nomarch Foundation for Excellent Talents in Science, Technology and Education Field of Guizhou Province, No. 201209
文摘Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-repeffusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.
基金supported by the National Natural Science Foundation of China, No. 81160157projects of Science and Technology Bureau of Guizhou Province, No.20093075, 20072127
文摘Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.
文摘Malaria is a disease that has drawn worldwide attention due to the alarming rise of mortality rates particularly in third world countries. During the Plasmodium parasite intraerythrocytic life cycle, metabolic processes include the formation of hemozoin or malaria pigment. This pigment functions in the prevention of oxygen radical-mediated damage to the parasite. Drugs targeting hemozoin formation such as chloroquine and amodaquine are effective and are still used, but recently Plasmodium parasites have become resistant to these drugs, especially against chloroquine. In this study we looked at the potential use of two heterocyclic pyrimidine derivatives as anti-malaria drugs; 2,4-Diamino-6-Mercaptopyrimidine (DAMP) and 2-Mercaptopyrimidine (2-MP). These compounds bear various coordination sites that enable them to react with metal ions to form coordination compounds. We used two methods for testing the inhibition of ferriprotoporphyrin IX (FP) biomineralisation: semi-quantitative microassay used by Deharo, and a quantitative assay used by G. Blaner and M. Akkawi. We report here the finding that (DAMP) has an in vitro inhibitory effect on I%hematin formation at concentrations and magnitude of nearly similar order to that of chloroquine, 2-MP was found to be effective but to a lower degree than DAMP.
基金supported by the National Natural Science Foundation of China(No.31972197).
文摘Lactococcus lactis is an important food-grade microorganism that has been successfully applied as a starter to increase the level of 3-methylbutanal produced during the ripening of cheese.Three variants of branched-chain α-keto acid decarboxylase (KADC) were discovered in L.lactis strains with different 3-methylbutanal production abilities.Three genes encoding KADCs of varying lengths (KADC-long,KADC-middle,and KADC-short) were cloned and heterologously expressed into Escherichia coli.KADC activity was only detected in the E.coli cloned with the KADC-long-encoding gene.Homology modeling of the three KADC recombination proteins showed that an active-site residue (Glu462) and an S-pocket structure were necessary for the ability to catalyze substrates.KADC-long showed maximum activity at pH 7.0 and 30 ℃.The substrate hydrolysis and kinetic parameters demonstrated that KADC-long efficiently produces 2-methylbutanal and 3-methylbutanal.The heterologous expression of the full-length kdcA in low-3-methylbutanal-yield L.lactis strains increased their production yields.The results of this study demonstrate the function of the complete KADC in 3-methylbutanal production.