The investigation of complexation of uranium with biological active ligands is vital for understanding uranium speciation in biosystems. A number of studies have been undertaken for investigating the complexation of u...The investigation of complexation of uranium with biological active ligands is vital for understanding uranium speciation in biosystems. A number of studies have been undertaken for investigating the complexation of uranium in its (VI) oxidation states but similar investigations pertaining to the interaction of uranium, in lower oxidation states, with biological ligands is scarce. The aim of the work is to bridge this gap and studies have been carried out to determine the coordination pattern of pyridine-3-carboxylic acid with uranium(IV). Semi-micro analysis, spectro-analytical techniques, magnetic susceptibility and cyclic voltammetry have been employed for the characterization of the synthesized complex.展开更多
Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening...Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is catalyzed by the cytochrome P450 monooxygenase CYP71A13. Here, we demonstrate that the Ara- bidopsis GH3.5 protein, a multifunctional acetyl-amido synthetase, is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes. Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection. The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro. In support of the in vitro reaction, feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D. Dihydrocamalexic acid (DHCA), the precursor of camalexin and the substrate for PAD3, was accumulated in gh3.5-1DIpad3-1, suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis. Furthermore, expression of the major camalexin biosynthesis genes CYP79B2, CYP71A12, CYP71A13 and PAD3 was strongly induced in gh3.5-1D. Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys), and upregulation of the major biosynthetic pathway genes.展开更多
Background Technetium-99m or 99mTC is widely used for labeling peptide in nuclear medicine. Somatostatin and its analog can inhibit tumor cell growth after binding with its receptor. This research was to study the pre...Background Technetium-99m or 99mTC is widely used for labeling peptide in nuclear medicine. Somatostatin and its analog can inhibit tumor cell growth after binding with its receptor. This research was to study the preclinical effect of a new 99rnTc-6-hydrazinopyridine-3-carboxylic acid (HYNIC)-depreotide, indirect 99rnTc labeling of depreotide using HYNIC as a bifunctional chelator. Methods The cyclopeptide, cyclo-[(N-Me) Phe-Tyr-D-Trp-Lys-VaI-Hcy], the linear peptide, and [CICH2-CO.^-Dap-Lys- Cys-Lys-amide] were synthesized by Fmoc solid-phase synthesis. The cyclopeptide and the linear peptide were linked by liquid-phase synthesis. The product depreotide was isolated and purified by high performance liquid chromatography and was confirmed by mass spectrography. Depreotide was labeled with egmTc through a direct labeling method, using HYNIC as a bifunctional chelator. Paper chromatography method was used to calculate the labeling rate, and through the comparative analysis selected the best mark conditions. The new 99mTc-HYNIC-depreotide was tested by high-performance liquid chromatography (HPLC). The internalization and externalization rates of the new 99mTc-HYNIC-depreotide were studied in A549 cells. Furthermore, biodistribution of the radiopeptide was studied in nude mice, bearing tumors from human lung carcinoma cells SPC-A1. Results The molecular of synthesize depreotide was 1358, and the purity of it was 95.29%. The labeling efficiency of 99mTc-HYNIC-depreotide was highest at pH 6.0 and 15℃, about (70.95±0.84)%. The labeling rate of the new 99mTc-HYNIC-depreotide rose to a peak of (20.75±0.48)% at 60 minutes in A549 cells at 37℃ and decreased slightly later, while it elevated gradually during the time course at 4℃ and 25℃. The internalization rate of the new 99rnTc-HYNIC-depreotide at 37℃ increased gradually and reached the peak of 84.4% in 120 minutes, while the externalization rate of the new 99mTc-HYNIC-depreotide was always less than 20%. In mice bearing the experimental SPC-A1 tumor, the new 99mTc-HYNIC-depreotide demonstrated a high tumor uptake of (4.05±0.04)% ID/g at 1.5 hpi and remained high ((2.51±0.06)% ID/g) at 4 hpi. The tumor-to-lung activity concentration ratio (T/Lu) was very high for the new 99mTc-HYNIC-depreotide at all time points. So did the tumor-to-muscle activity (T/Mu) and tumor-to-blood activity concentration ratios (T/BI). Conclusion The findings suggested that the new 99mTc-HYNIC-depreotide might be a promising candidate radiopharmaceutical for imaging somatostatin receptor positive lung cancer.展开更多
A practical synthetic method for methyl 1-oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylate was developed by means of triphosgene. Several analogues were prepared by this new method.
Acetylcholinesterase inhibitors are the most frequently prescribed anti-Alzheimer's drugs. A series of 5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester derivatives as the novel acetylcholinesterase inhibito...Acetylcholinesterase inhibitors are the most frequently prescribed anti-Alzheimer's drugs. A series of 5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester derivatives as the novel acetylcholinesterase inhibitors was designed based on virtual screening methods. The target compounds were synthesized with Biginelli reaction and Hantzsch-type condensation of dihydropyrimidines with substituted phenacyl chlorides, and were characterized with elemental analysis, IR, MS, ^1H NMR, and ^13C NMR. The biological evaluation against human acetylcholinesterase in vitro indicated all the target compounds show more than 50% inhibition at 10μmol/L by means of the Ellman method. The results provide a starting point for the development of novel drugs to treat Alzheimer's disease and lay the foundation of searching for improved acetylcholinesterase inhibitors with the novel scaffolds.展开更多
By choosing neuroimmunophilin FKBP12 as a therapeutical target, we have attempted to discover a new structural drug for treating neurodegenerative disease. This drug should possess neurotrophic activity and not affect...By choosing neuroimmunophilin FKBP12 as a therapeutical target, we have attempted to discover a new structural drug for treating neurodegenerative disease. This drug should possess neurotrophic activity and not affect the immune system. Based on the crystal structure of FKBP12, FK506 and Calcineurin complex, a series of small organic molecules were designed. These molecules were to have the ability of binding to FKBP12 in a virtual screening. By using a solution parallel synthetic method, these compounds were synthesized. The neuroprotective and neuroregenerative activities of these compounds were evaluated by binding assays, PC12 cells survival and neurite outgrowth model, chick dorsal root ganglion cultures (DRG) and 6-OHDA lesioned mice sympathetic nerve endings model. The evaluation results of these compounds showed that compound N308 has great promise as a candidate for a neuroprotective and neuroregenerative agent.展开更多
Proceeding from natural amino acid L-asparagine and commercially available aldehydes a stereoselective synthesis was developed of (2S,4S)-2-alkyl(aryl)-3-(3-sulfanylpropanoyl)-6-oxohexahy- dropyrimidine-4-carboxylic a...Proceeding from natural amino acid L-asparagine and commercially available aldehydes a stereoselective synthesis was developed of (2S,4S)-2-alkyl(aryl)-3-(3-sulfanylpropanoyl)-6-oxohexahy- dropyrimidine-4-carboxylic acids, potential antihypertensive drugs, inhibitors of the angiotensin converting enzyme.展开更多
BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin co...BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin complex 1(mTORC1)activation.Previous studies have demonstrated the therapeutic effects of BT2 on arthritis,liver cancer,and kidney injury.However,the effects of BT2 on ulcerative colitis(UC)are unknown.AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.METHODS Mouse UC models were created through the administration of 3.5%dextran sodium sulfate(DSS)for 7 d.The mice in the treated groups were administered salazosulfapyridine(300 mg/kg)or BT2(20 mg/kg)orally from day 1 to day 7.At the end of the study,all of the mice were sacrificed,and colon tissues were removed for hematoxylin and eosin staining,immunoblot analyses,and immunohistochemical assays.Cytokine levels were measured by flow cytometry.The contents of BCAAs including valine,leucine,and isoleucine,in mouse serum were detected by liquid chromatography-tandem mass spectrometry,and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice.BT2 also reduced the production of the proinflammatory cytokines interleukin 6(IL-6),IL-9,and IL-2 and increased the anti-inflammatory cytokine IL-10 level.In addition,BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice.Furthermore,highthroughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis.Compared with the DSS group,BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.展开更多
A facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids is described via the Pfitzinger reaction of isatins with sodium pyruvate following consequent decarboxylation under m...A facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids is described via the Pfitzinger reaction of isatins with sodium pyruvate following consequent decarboxylation under microwave irradiation.展开更多
In order to understand the chemical-biological interactions governing their activities toward neuraminidase (NA), QSAR models of 28 thiazolidine-4-carboxylic acid derivatives with inhibitory influenza A virus were d...In order to understand the chemical-biological interactions governing their activities toward neuraminidase (NA), QSAR models of 28 thiazolidine-4-carboxylic acid derivatives with inhibitory influenza A virus were developed. The obtained HQSAR (hologram quantitative structure activity relationship), Topomer CoMFA and CoMSIA (comparative molecular similarity indices analysis) models were robust and had good exterior predictive capabilities. Moreover, QSAR modeling results elucidated that hydrogen bonds highly contributed to the inhibitory activity, then electrostatic and hydrophobic factors. Squared multiple correlation coefficients (R2) of HQSAR, Topomer CoMFA and CoMSIA models were 0.994, 0.978 and 0.996, respectively. Squared cross-validated correlation coefficients (Q2) of HQSAR, Topomer CoMFA and CoMSIA models were in turn 0.951, 919 and 0.820. Furthermore, squared multiple correlation coefficients for the test set (R2test) of HQSAR, CoMFA and CoMSIA models were 0.879, 0.912 and 0.953, respectively. Squared cross-validated correlation coefficients for the test set (Q2ext) of HQSAR, Topomer CoMFA and CoMSIA models were 0.867, 0.884 and 0.899, correspondingly.展开更多
A new complex Mn(Htpc)2(H2O)2(1, Htpc = 5-(trifluoromethyl)pyridine-2-carboxylic acid) has been synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. 1 belongs to triclinic ...A new complex Mn(Htpc)2(H2O)2(1, Htpc = 5-(trifluoromethyl)pyridine-2-carboxylic acid) has been synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. 1 belongs to triclinic system, space group P■ with a = 5.0885(10), b = 6.5574(13), c = 14.016(3) ?, β = 90.67(3)o, V = 436.34(17) ?3, Z = 1, Dc = 1.793 g·cm-3, μ = 0.855 mm-1, Mr = 471.18, F(000) = 235, the final R = 0.0454 and wR = 0.1134 for 1998 observed reflections with I > 2σ(I). The Mn(Ⅱ) ion is coordinated by two N and two O atoms from two Htpc as well as two O atoms from two coordinated water molecules, forming a 0D motif with distorted octahedral coordinate geometry. The adjacent 0D units are linked into 1D chains through hydrogen bond O(1W)–H(1 WB)···O(2), and via the O(1 W)–H(1 WA)···O(1) hydrogen bond the neighboring 1D chains are connected into a 2D supramolecular layer. Moreover, the interactions between the ligand and its complex with CT-DNA were studied by EtBr fluorescence probe, which suggested that these compounds bind to CT-DNA through an intercalation mode. The binding constants were 0.41 and 0.64 for Htpc and complex 1, respectively. It indicates that the interaction between complex 1 and CT-DNA is stronger than Htpc.展开更多
To elucidate the relationship between ethylene evolution from the grains and the appearance quality of rice, ten different rice genotypes were used to determine the ethylene evolution rate, 1-aminocylopropane-1-carbox...To elucidate the relationship between ethylene evolution from the grains and the appearance quality of rice, ten different rice genotypes were used to determine the ethylene evolution rate, 1-aminocylopropane-1-carboxylic acid (ACC) concentration in grains during grain filling and the appearance quality of rice, and the effects of chemical regulators on concentrations of ethylene and ACC in the grains during grain filling were also investigated to verify the roles of ethylene in the rice quality formation. The ethylene evolution rates and ACC concentrations in grains during the mid and late grain filling stages were very significantly and positively correlated with chalky kernel percentage and chalkiness. The cultivars with a low ACC concentration in grains exhibited a close amyloplast arrangement and small space between starch granules, whereas those with a high ACC concentration in grains showed a loose arrangement and wide space between the granules. Application of 1 μmol/L ACC to panicles at mid and late grain filling stages significantly loosened amyloplast arrangement and increased chalky kernel percentage, chalky area and chalkiness, and the results were reversed when 1 μmol/L amino-ethoxyvinylglycine, an inhibitor of ACC synthesis enzyme, was applied to panicles. A practice of moderate dry-wet alternate irrigation reduced ethylene evolution and ACC concentration in grains and thereby reduced chalkiness. The results suggested that ethylene and ACC in grains play an important role in the endosperm structure and appearance quality of rice, and the appearance quality would be improved by reducing ethylene evolution and ACC in grains through either variety breeding and selection, or chemical regulations or cultivation techniques.展开更多
Electrocarboxylation of anthrone in the presence of CO2 to anthrance-9-carboxylic acid directly was carried out. The electroreduction behavior of anthrone was examined by cyclic voltammetry in the absence and presence...Electrocarboxylation of anthrone in the presence of CO2 to anthrance-9-carboxylic acid directly was carried out. The electroreduction behavior of anthrone was examined by cyclic voltammetry in the absence and presence of CO2. Then the influences of the supporting electrolytes, temperature, electrode material and anthrone concentration on the carboxylation yield were investigated. Under the optimized conditions, anthrancene-9-carboxylic acid was obtained in a good yield(96.1%).展开更多
Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO...Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO),on the expression of genes and proteins related to lipid metabolism,inflammation,oxidative stress,and the endocannabinoid system(ECS)in the expelled placenta,as well as on FA profile and inflammatory response of neonates.Late-pregnant Holstein dairy cows were supplemented with saturated fat(CTL),FLX,or FO.Placental cotyledons(n=5)were collected immediately after expulsion,and extracted RNA and proteins were analyzed by RTPCR and proteomic analysis.Neonatal blood was assessed for FA composition and concentrations of inflammatory markers.Results FO increased the gene expression of fatty acid binding protein 4(FABP4),interleukin 10(IL-10),catalase(CAT),cannabinoid receptor 1(CNR1),and cannabinoid receptor 2(CNR2)compared with CTL placenta.Gene expression of ECS-enzyme FA-amide hydrolase(FAAH)was lower in FLX and FO than in CTL.Proteomic analysis identified 3,974 proteins;of these,51–59 were differentially abundant between treatments(P≤0.05,|fold change|≥1.5).Top canonical pathways enriched in FLX vs.CTL and in FO vs.CTL were triglyceride metabolism and inflammatory processes.Both n-3 FA increased the placental abundance of FA binding proteins(FABPs)3 and 7.The abundance of CNR1 cannabinoid-receptor-interacting-protein-1(CNRIP1)was reduced in FO vs.FLX.In silico modeling affirmed that bovine FABPs bind to endocannabinoids.The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1,whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs.CTL placenta.Maternal FO enriched neonatal plasma with n-3 FAs,and both FLX and FO reduced interleukin-6 concentrations compared with CTL.Conclusion Maternal n-3 FA from FLX and FO differentially affected the bovine placenta;both enhanced lipid metabolism and modulated oxidative stress,however,FO increased some transcriptional ECS components,possibly related to the increased FABPs.Maternal FO induced a unique balance of pro-and anti-inflammatory components in the placenta.Taken together,different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes,which may affect the neonatal immune system.展开更多
AIM: To demonstrate the potential of using 2-aminothiazoline-4-carboxylic acid(ATCA) as a novel biomarker/forensic biomarker for cyanide poisoning. METHODS: A sensitive method was developed and employed for the identi...AIM: To demonstrate the potential of using 2-aminothiazoline-4-carboxylic acid(ATCA) as a novel biomarker/forensic biomarker for cyanide poisoning. METHODS: A sensitive method was developed and employed for the identification and quantification of ATCA in biological samples, where the sample extraction and clean up were achieved by solid phase extraction(SPE). After optimization of SPE procedures, ATCA was analyzed by high performance liquid chromatographytandem mass spectrometry. ATCA levels following the administration of different doses of potassium cyanide(KCN) to mice were measured and compared to endogenous ATCA levels in order to study the significance of using ATCA as a biomarker for cyanide poisoning.RESULTS: A custom made analytical method was established for a new(mice) model when animals were exposed to increasing KCN doses. The application of this method provided important new information on ATCA as a potential cyanide biomarker. ATCA concentration in mice plasma samples were increased from 189 ± 28 ng/mL(n = 3) to 413 ± 66 ng/mL(n = 3) following a 10 mg/kg body weight dose of KCN introduced subcutaneously. The sensitivity of this analytical method proved to be a tool for measuring endogenous level of ATCA in mice organs as follows: 1.2 ± 0.1 μg/g for kidney samples, 1.6 ± 0.1 μg/g for brain samples, 1.8 ± 0.2 μg/g for lung samples, 2.9 ± 0.1 μg/g for heart samples, and 3.6 ± 0.9 μg/g for liver samples. CONCLUSION: This finding suggests that ATCA has the potential to serve as a plasma biomarker / forensic biomarker for cyanide poisoning.展开更多
Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we re...Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.展开更多
Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har...Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har-bors four and six homologous copies,respectively,of the two fatty acid desaturases FAD2 and FAD3,which con-trol the last two steps of ALA biosynthesis during seed oil accumulation.In this study,we compared their promoters,coding sequences,and expression levels in three high-ALA inbred lines 2006L,R8Q10,and YH25005,a low-ALA line A28,a low-ALA/high-oleic-acid accession SW,and the wildtype ZS11.The expression levels of most FAD2 and FAD3 homologs in the three high-ALA accessions were higher than those in ZS11 and much higher than those in A28 and SW.The three high-ALA accessions shared similar sequences with the pro-moters and CDSs of BnFAD3.C4 and BnFAD3.A3.In A28 and SW,substitution of three amino acid residues in BnFAD2.A5 and BnFAD2.C5,an absence of BnFAD2.C1 locus,and a 549 bp long deletion on the BnFAD3.A3 promoter were detected.The profile of BnFAD2 mutation in the two low-ALA accessions A28 and SW is different from that reported in previous studies.The mutations in BnFAD3 in the high-ALA accessions are reported for thefirst time.In identifying the sites of these mutations,we provide detailed information to aid the design of mole-cular markers for accelerated breeding schemes.展开更多
Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiat...Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiation-protective drugs and elucidate the molecular mechanisms related to radiation-induced inflammatory damage.Methods:A mouse model of radiation-induced immunoinflammatory injury was established to verify the anti-inflammatory effects of FA in vivo.C57BL/6J mice were randomly divided into six groups,and 5 Gy whole-body irradiation was used for modeling.Mice were administered a gastric solvent,amifostine,or 25,50,or 100 mg/kg FA daily for 12 days,consecutively,before irradiation.The serum of mice was collected 24 hour after irradiation to observe the content of inflammatory factors interleukin(IL)-1β,IL-18,IL-6,and tumor necrosis factor(TNF)-α.The spleen and thymus tissues of mice were weighed and the organ index was calculated for pathological testing and immunofluorescence detection.Results:FA reduced the radiation-induced decrease in the spleen and thymus indices.FA significantly reduced the secretion of inflammatory factors in the serum and reversed the radiation-induced reduction in lymphocytes in the spleen and thymus of mice.FA activated Sirt1 and inhibited the expression of the NLRP3 inflammasome to alleviate the inflammatory response.Conclusions:FA reduced radiation-induced inflammation in animals,possibly by activating Sirt1 and reducing nucleotide oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome expression,thereby reducing the secretion of inflammatory factors.展开更多
Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environ...Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.展开更多
1-H-Pyrrole-2-carboxylic acid [2-(naphthalen-1-ylamino)-ethyl]-amide has been synthesized and characterized. Its crystal is of monoclinic, space group P2 1/n with a = 5.930(6), b = 12.144(13), c = 20.10(2) , ...1-H-Pyrrole-2-carboxylic acid [2-(naphthalen-1-ylamino)-ethyl]-amide has been synthesized and characterized. Its crystal is of monoclinic, space group P2 1/n with a = 5.930(6), b = 12.144(13), c = 20.10(2) , A, β = 95.709(17)°, V= 1441(3) ,A, Z= 4, C17H17N3O, Mr= 279.34, Dc= 1.288 g/cm^3, F(000) = 592, μ(MoKa) = 0.083 mm^-1, S = 1.019, R = 0.0473 and wR = 0.1181 for 1713 observed reflections with I 〉 2 σ(I). X-ray diffraction reveals that two molecules of the title compound form a dimer through a pair of N-H…O hydrogen bonds.展开更多
文摘The investigation of complexation of uranium with biological active ligands is vital for understanding uranium speciation in biosystems. A number of studies have been undertaken for investigating the complexation of uranium in its (VI) oxidation states but similar investigations pertaining to the interaction of uranium, in lower oxidation states, with biological ligands is scarce. The aim of the work is to bridge this gap and studies have been carried out to determine the coordination pattern of pyridine-3-carboxylic acid with uranium(IV). Semi-micro analysis, spectro-analytical techniques, magnetic susceptibility and cyclic voltammetry have been employed for the characterization of the synthesized complex.
基金supported by grants from the Ministry of Science and Technology of China (2011CB100700 and 2007AA10Z107)from the CAS International Partnership Program for Creative Research Teams
文摘Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is catalyzed by the cytochrome P450 monooxygenase CYP71A13. Here, we demonstrate that the Ara- bidopsis GH3.5 protein, a multifunctional acetyl-amido synthetase, is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes. Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection. The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro. In support of the in vitro reaction, feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D. Dihydrocamalexic acid (DHCA), the precursor of camalexin and the substrate for PAD3, was accumulated in gh3.5-1DIpad3-1, suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis. Furthermore, expression of the major camalexin biosynthesis genes CYP79B2, CYP71A12, CYP71A13 and PAD3 was strongly induced in gh3.5-1D. Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys), and upregulation of the major biosynthetic pathway genes.
基金the National Natural Science Foundation of China
文摘Background Technetium-99m or 99mTC is widely used for labeling peptide in nuclear medicine. Somatostatin and its analog can inhibit tumor cell growth after binding with its receptor. This research was to study the preclinical effect of a new 99rnTc-6-hydrazinopyridine-3-carboxylic acid (HYNIC)-depreotide, indirect 99rnTc labeling of depreotide using HYNIC as a bifunctional chelator. Methods The cyclopeptide, cyclo-[(N-Me) Phe-Tyr-D-Trp-Lys-VaI-Hcy], the linear peptide, and [CICH2-CO.^-Dap-Lys- Cys-Lys-amide] were synthesized by Fmoc solid-phase synthesis. The cyclopeptide and the linear peptide were linked by liquid-phase synthesis. The product depreotide was isolated and purified by high performance liquid chromatography and was confirmed by mass spectrography. Depreotide was labeled with egmTc through a direct labeling method, using HYNIC as a bifunctional chelator. Paper chromatography method was used to calculate the labeling rate, and through the comparative analysis selected the best mark conditions. The new 99mTc-HYNIC-depreotide was tested by high-performance liquid chromatography (HPLC). The internalization and externalization rates of the new 99mTc-HYNIC-depreotide were studied in A549 cells. Furthermore, biodistribution of the radiopeptide was studied in nude mice, bearing tumors from human lung carcinoma cells SPC-A1. Results The molecular of synthesize depreotide was 1358, and the purity of it was 95.29%. The labeling efficiency of 99mTc-HYNIC-depreotide was highest at pH 6.0 and 15℃, about (70.95±0.84)%. The labeling rate of the new 99mTc-HYNIC-depreotide rose to a peak of (20.75±0.48)% at 60 minutes in A549 cells at 37℃ and decreased slightly later, while it elevated gradually during the time course at 4℃ and 25℃. The internalization rate of the new 99rnTc-HYNIC-depreotide at 37℃ increased gradually and reached the peak of 84.4% in 120 minutes, while the externalization rate of the new 99mTc-HYNIC-depreotide was always less than 20%. In mice bearing the experimental SPC-A1 tumor, the new 99mTc-HYNIC-depreotide demonstrated a high tumor uptake of (4.05±0.04)% ID/g at 1.5 hpi and remained high ((2.51±0.06)% ID/g) at 4 hpi. The tumor-to-lung activity concentration ratio (T/Lu) was very high for the new 99mTc-HYNIC-depreotide at all time points. So did the tumor-to-muscle activity (T/Mu) and tumor-to-blood activity concentration ratios (T/BI). Conclusion The findings suggested that the new 99mTc-HYNIC-depreotide might be a promising candidate radiopharmaceutical for imaging somatostatin receptor positive lung cancer.
文摘A practical synthetic method for methyl 1-oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylate was developed by means of triphosgene. Several analogues were prepared by this new method.
文摘Acetylcholinesterase inhibitors are the most frequently prescribed anti-Alzheimer's drugs. A series of 5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester derivatives as the novel acetylcholinesterase inhibitors was designed based on virtual screening methods. The target compounds were synthesized with Biginelli reaction and Hantzsch-type condensation of dihydropyrimidines with substituted phenacyl chlorides, and were characterized with elemental analysis, IR, MS, ^1H NMR, and ^13C NMR. The biological evaluation against human acetylcholinesterase in vitro indicated all the target compounds show more than 50% inhibition at 10μmol/L by means of the Ellman method. The results provide a starting point for the development of novel drugs to treat Alzheimer's disease and lay the foundation of searching for improved acetylcholinesterase inhibitors with the novel scaffolds.
基金Supported by the National Basic Research Program of China (Grant No. G1998051107)Hi-tech Research and Development Program of China (Grant No. 2002AA233051)
文摘By choosing neuroimmunophilin FKBP12 as a therapeutical target, we have attempted to discover a new structural drug for treating neurodegenerative disease. This drug should possess neurotrophic activity and not affect the immune system. Based on the crystal structure of FKBP12, FK506 and Calcineurin complex, a series of small organic molecules were designed. These molecules were to have the ability of binding to FKBP12 in a virtual screening. By using a solution parallel synthetic method, these compounds were synthesized. The neuroprotective and neuroregenerative activities of these compounds were evaluated by binding assays, PC12 cells survival and neurite outgrowth model, chick dorsal root ganglion cultures (DRG) and 6-OHDA lesioned mice sympathetic nerve endings model. The evaluation results of these compounds showed that compound N308 has great promise as a candidate for a neuroprotective and neuroregenerative agent.
文摘Proceeding from natural amino acid L-asparagine and commercially available aldehydes a stereoselective synthesis was developed of (2S,4S)-2-alkyl(aryl)-3-(3-sulfanylpropanoyl)-6-oxohexahy- dropyrimidine-4-carboxylic acids, potential antihypertensive drugs, inhibitors of the angiotensin converting enzyme.
基金Supported by National Natural Science Foundation of ChinaNo. 82074241+1 种基金Project of Jiangsu Province Hospital of Traditional Chinese Medicine Peak TalentNo. y2021rc36
文摘BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin complex 1(mTORC1)activation.Previous studies have demonstrated the therapeutic effects of BT2 on arthritis,liver cancer,and kidney injury.However,the effects of BT2 on ulcerative colitis(UC)are unknown.AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.METHODS Mouse UC models were created through the administration of 3.5%dextran sodium sulfate(DSS)for 7 d.The mice in the treated groups were administered salazosulfapyridine(300 mg/kg)or BT2(20 mg/kg)orally from day 1 to day 7.At the end of the study,all of the mice were sacrificed,and colon tissues were removed for hematoxylin and eosin staining,immunoblot analyses,and immunohistochemical assays.Cytokine levels were measured by flow cytometry.The contents of BCAAs including valine,leucine,and isoleucine,in mouse serum were detected by liquid chromatography-tandem mass spectrometry,and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice.BT2 also reduced the production of the proinflammatory cytokines interleukin 6(IL-6),IL-9,and IL-2 and increased the anti-inflammatory cytokine IL-10 level.In addition,BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice.Furthermore,highthroughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis.Compared with the DSS group,BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.
基金the National Basic Research Program(No.2003CB515400),administered by the Ministry of Science and Technology of China.
文摘A facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids is described via the Pfitzinger reaction of isatins with sodium pyruvate following consequent decarboxylation under microwave irradiation.
基金supported by the National Natural Science Foundation of China (No. 21202110)
文摘In order to understand the chemical-biological interactions governing their activities toward neuraminidase (NA), QSAR models of 28 thiazolidine-4-carboxylic acid derivatives with inhibitory influenza A virus were developed. The obtained HQSAR (hologram quantitative structure activity relationship), Topomer CoMFA and CoMSIA (comparative molecular similarity indices analysis) models were robust and had good exterior predictive capabilities. Moreover, QSAR modeling results elucidated that hydrogen bonds highly contributed to the inhibitory activity, then electrostatic and hydrophobic factors. Squared multiple correlation coefficients (R2) of HQSAR, Topomer CoMFA and CoMSIA models were 0.994, 0.978 and 0.996, respectively. Squared cross-validated correlation coefficients (Q2) of HQSAR, Topomer CoMFA and CoMSIA models were in turn 0.951, 919 and 0.820. Furthermore, squared multiple correlation coefficients for the test set (R2test) of HQSAR, CoMFA and CoMSIA models were 0.879, 0.912 and 0.953, respectively. Squared cross-validated correlation coefficients for the test set (Q2ext) of HQSAR, Topomer CoMFA and CoMSIA models were 0.867, 0.884 and 0.899, correspondingly.
基金Supported by the Scientific Research Foundation of Higher Education Institutions of Ningxia(No.NGY2017004)the National Natural Science Foundation of China(Nos.21763022 and 50564043)the Major Innovation Projects for Building First-class Universities in China’s Western Region(No.ZKZD2017003)
文摘A new complex Mn(Htpc)2(H2O)2(1, Htpc = 5-(trifluoromethyl)pyridine-2-carboxylic acid) has been synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. 1 belongs to triclinic system, space group P■ with a = 5.0885(10), b = 6.5574(13), c = 14.016(3) ?, β = 90.67(3)o, V = 436.34(17) ?3, Z = 1, Dc = 1.793 g·cm-3, μ = 0.855 mm-1, Mr = 471.18, F(000) = 235, the final R = 0.0454 and wR = 0.1134 for 1998 observed reflections with I > 2σ(I). The Mn(Ⅱ) ion is coordinated by two N and two O atoms from two Htpc as well as two O atoms from two coordinated water molecules, forming a 0D motif with distorted octahedral coordinate geometry. The adjacent 0D units are linked into 1D chains through hydrogen bond O(1W)–H(1 WB)···O(2), and via the O(1 W)–H(1 WA)···O(1) hydrogen bond the neighboring 1D chains are connected into a 2D supramolecular layer. Moreover, the interactions between the ligand and its complex with CT-DNA were studied by EtBr fluorescence probe, which suggested that these compounds bind to CT-DNA through an intercalation mode. The binding constants were 0.41 and 0.64 for Htpc and complex 1, respectively. It indicates that the interaction between complex 1 and CT-DNA is stronger than Htpc.
基金This paper was translated from its Chinese version in Chinese Journal of Rice Science.
文摘To elucidate the relationship between ethylene evolution from the grains and the appearance quality of rice, ten different rice genotypes were used to determine the ethylene evolution rate, 1-aminocylopropane-1-carboxylic acid (ACC) concentration in grains during grain filling and the appearance quality of rice, and the effects of chemical regulators on concentrations of ethylene and ACC in the grains during grain filling were also investigated to verify the roles of ethylene in the rice quality formation. The ethylene evolution rates and ACC concentrations in grains during the mid and late grain filling stages were very significantly and positively correlated with chalky kernel percentage and chalkiness. The cultivars with a low ACC concentration in grains exhibited a close amyloplast arrangement and small space between starch granules, whereas those with a high ACC concentration in grains showed a loose arrangement and wide space between the granules. Application of 1 μmol/L ACC to panicles at mid and late grain filling stages significantly loosened amyloplast arrangement and increased chalky kernel percentage, chalky area and chalkiness, and the results were reversed when 1 μmol/L amino-ethoxyvinylglycine, an inhibitor of ACC synthesis enzyme, was applied to panicles. A practice of moderate dry-wet alternate irrigation reduced ethylene evolution and ACC concentration in grains and thereby reduced chalkiness. The results suggested that ethylene and ACC in grains play an important role in the endosperm structure and appearance quality of rice, and the appearance quality would be improved by reducing ethylene evolution and ACC in grains through either variety breeding and selection, or chemical regulations or cultivation techniques.
基金Supported by the National Natural Science Foundation of China(No.20973065)the"Chen Guang"Project Supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,China(No.10CG26)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100076120020)the Foundation of Outstanding Yong Talent in University of Anhui Province,China(No.2010SQRL042)
文摘Electrocarboxylation of anthrone in the presence of CO2 to anthrance-9-carboxylic acid directly was carried out. The electroreduction behavior of anthrone was examined by cyclic voltammetry in the absence and presence of CO2. Then the influences of the supporting electrolytes, temperature, electrode material and anthrone concentration on the carboxylation yield were investigated. Under the optimized conditions, anthrancene-9-carboxylic acid was obtained in a good yield(96.1%).
基金financially supported by the Chief Scientist of the Ministry of Agriculture,grant number 20-04-0015,Rishon Lezion,Israel。
文摘Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO),on the expression of genes and proteins related to lipid metabolism,inflammation,oxidative stress,and the endocannabinoid system(ECS)in the expelled placenta,as well as on FA profile and inflammatory response of neonates.Late-pregnant Holstein dairy cows were supplemented with saturated fat(CTL),FLX,or FO.Placental cotyledons(n=5)were collected immediately after expulsion,and extracted RNA and proteins were analyzed by RTPCR and proteomic analysis.Neonatal blood was assessed for FA composition and concentrations of inflammatory markers.Results FO increased the gene expression of fatty acid binding protein 4(FABP4),interleukin 10(IL-10),catalase(CAT),cannabinoid receptor 1(CNR1),and cannabinoid receptor 2(CNR2)compared with CTL placenta.Gene expression of ECS-enzyme FA-amide hydrolase(FAAH)was lower in FLX and FO than in CTL.Proteomic analysis identified 3,974 proteins;of these,51–59 were differentially abundant between treatments(P≤0.05,|fold change|≥1.5).Top canonical pathways enriched in FLX vs.CTL and in FO vs.CTL were triglyceride metabolism and inflammatory processes.Both n-3 FA increased the placental abundance of FA binding proteins(FABPs)3 and 7.The abundance of CNR1 cannabinoid-receptor-interacting-protein-1(CNRIP1)was reduced in FO vs.FLX.In silico modeling affirmed that bovine FABPs bind to endocannabinoids.The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1,whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs.CTL placenta.Maternal FO enriched neonatal plasma with n-3 FAs,and both FLX and FO reduced interleukin-6 concentrations compared with CTL.Conclusion Maternal n-3 FA from FLX and FO differentially affected the bovine placenta;both enhanced lipid metabolism and modulated oxidative stress,however,FO increased some transcriptional ECS components,possibly related to the increased FABPs.Maternal FO induced a unique balance of pro-and anti-inflammatory components in the placenta.Taken together,different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes,which may affect the neonatal immune system.
基金Supported by NIH:NIAID/USAMRICD Interagency Agreements(W911NF-07-D-0001)the USAMRICD under the auspices of the US Army Research Office Scientific Services Program administered by Battelle(Delivery order 0557,Contract No TCN 08284)the Robert A.Welch Foundation at Sam Houston State University,Huntsville,TX,United States
文摘AIM: To demonstrate the potential of using 2-aminothiazoline-4-carboxylic acid(ATCA) as a novel biomarker/forensic biomarker for cyanide poisoning. METHODS: A sensitive method was developed and employed for the identification and quantification of ATCA in biological samples, where the sample extraction and clean up were achieved by solid phase extraction(SPE). After optimization of SPE procedures, ATCA was analyzed by high performance liquid chromatographytandem mass spectrometry. ATCA levels following the administration of different doses of potassium cyanide(KCN) to mice were measured and compared to endogenous ATCA levels in order to study the significance of using ATCA as a biomarker for cyanide poisoning.RESULTS: A custom made analytical method was established for a new(mice) model when animals were exposed to increasing KCN doses. The application of this method provided important new information on ATCA as a potential cyanide biomarker. ATCA concentration in mice plasma samples were increased from 189 ± 28 ng/mL(n = 3) to 413 ± 66 ng/mL(n = 3) following a 10 mg/kg body weight dose of KCN introduced subcutaneously. The sensitivity of this analytical method proved to be a tool for measuring endogenous level of ATCA in mice organs as follows: 1.2 ± 0.1 μg/g for kidney samples, 1.6 ± 0.1 μg/g for brain samples, 1.8 ± 0.2 μg/g for lung samples, 2.9 ± 0.1 μg/g for heart samples, and 3.6 ± 0.9 μg/g for liver samples. CONCLUSION: This finding suggests that ATCA has the potential to serve as a plasma biomarker / forensic biomarker for cyanide poisoning.
基金supported by research funds from Zhangzhou Pien Tze Huang Pharmaceutical Co.Ltd(Grant Nos.:437b8f31,d6092dae,YHT-19064 to Chundong Yu)the National Natural Science Foundation of China(Grant Nos.:81970485,82173086 to Chundong Yu)the Natural Science Foundation of Fujian Province(Grant No.:2023J01249 to Shicong Wang).
文摘Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.
基金The study was financially supported by Projects from Shaanxi Province(2021LLRH-07-03-01 and 2023-ZDLNY-07)Yangling Seed Industry Innovation(YLzy-yc2021-01).The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.
文摘Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har-bors four and six homologous copies,respectively,of the two fatty acid desaturases FAD2 and FAD3,which con-trol the last two steps of ALA biosynthesis during seed oil accumulation.In this study,we compared their promoters,coding sequences,and expression levels in three high-ALA inbred lines 2006L,R8Q10,and YH25005,a low-ALA line A28,a low-ALA/high-oleic-acid accession SW,and the wildtype ZS11.The expression levels of most FAD2 and FAD3 homologs in the three high-ALA accessions were higher than those in ZS11 and much higher than those in A28 and SW.The three high-ALA accessions shared similar sequences with the pro-moters and CDSs of BnFAD3.C4 and BnFAD3.A3.In A28 and SW,substitution of three amino acid residues in BnFAD2.A5 and BnFAD2.C5,an absence of BnFAD2.C1 locus,and a 549 bp long deletion on the BnFAD3.A3 promoter were detected.The profile of BnFAD2 mutation in the two low-ALA accessions A28 and SW is different from that reported in previous studies.The mutations in BnFAD3 in the high-ALA accessions are reported for thefirst time.In identifying the sites of these mutations,we provide detailed information to aid the design of mole-cular markers for accelerated breeding schemes.
基金funded by the National Key Research and Development Program(2022YFC3500303)Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202009)National Natural Science Foundation of China(81873063).
文摘Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiation-protective drugs and elucidate the molecular mechanisms related to radiation-induced inflammatory damage.Methods:A mouse model of radiation-induced immunoinflammatory injury was established to verify the anti-inflammatory effects of FA in vivo.C57BL/6J mice were randomly divided into six groups,and 5 Gy whole-body irradiation was used for modeling.Mice were administered a gastric solvent,amifostine,or 25,50,or 100 mg/kg FA daily for 12 days,consecutively,before irradiation.The serum of mice was collected 24 hour after irradiation to observe the content of inflammatory factors interleukin(IL)-1β,IL-18,IL-6,and tumor necrosis factor(TNF)-α.The spleen and thymus tissues of mice were weighed and the organ index was calculated for pathological testing and immunofluorescence detection.Results:FA reduced the radiation-induced decrease in the spleen and thymus indices.FA significantly reduced the secretion of inflammatory factors in the serum and reversed the radiation-induced reduction in lymphocytes in the spleen and thymus of mice.FA activated Sirt1 and inhibited the expression of the NLRP3 inflammasome to alleviate the inflammatory response.Conclusions:FA reduced radiation-induced inflammation in animals,possibly by activating Sirt1 and reducing nucleotide oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome expression,thereby reducing the secretion of inflammatory factors.
基金the China Scholarship Council(CSC)for funding(no.201806310116)。
文摘Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.
基金The program was supported by University Science Foundation of TianjinEducational Committee (20050609) and Tianjin Normal University
文摘1-H-Pyrrole-2-carboxylic acid [2-(naphthalen-1-ylamino)-ethyl]-amide has been synthesized and characterized. Its crystal is of monoclinic, space group P2 1/n with a = 5.930(6), b = 12.144(13), c = 20.10(2) , A, β = 95.709(17)°, V= 1441(3) ,A, Z= 4, C17H17N3O, Mr= 279.34, Dc= 1.288 g/cm^3, F(000) = 592, μ(MoKa) = 0.083 mm^-1, S = 1.019, R = 0.0473 and wR = 0.1181 for 1713 observed reflections with I 〉 2 σ(I). X-ray diffraction reveals that two molecules of the title compound form a dimer through a pair of N-H…O hydrogen bonds.