A accelerated arithmetic algorithm of the dynamic computing regions was designed,and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented.The dendritic growth and the reca...A accelerated arithmetic algorithm of the dynamic computing regions was designed,and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented.The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated.The effects of cooling rate on dendritic patterns and microsegregation patterns were studied.The computed results indicate that,with the increment of the cooling rate,the dendritic growth velocity increases,both the main branch and side-branches become slender,the secondary dendrite arm spacing becomes smaller,the inadequate solute diffusion in solid aggravates,and the severity of microsegregation ahead of interface aggravates.At a higher cooling rate,the binary alloy presents recalescence;while the cooling rate is small,no recalescence occurs.展开更多
Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer....Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.展开更多
To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-...To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system.展开更多
Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performan...Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performance of radiative cooling materials remains elusive,limiting insight into the underlying physics of their optical response and cooling efficacy.La_(2)O_(3)and HfO_(2),which represent rare earth and third/fourth subgroup inorganic oxides,respectively,show promise for radiative cooling applications.In this study,we used multiscale simulations to investigate the optical properties of La_(2)O_(3)and HfO_(2)across a broad spectrum.First-principles calculations revealed their dielectric functions and intrinsic refractive indices,and the results indicated that the slightly smaller bandgap of La_(2)O_(3)compared to HfO_(2)induces a higher refractive index in the solar band.Additionally,three-phonon scattering was found to provide more accurate infrared optical properties than two-phonon scattering,which enhanced the emissivity in the sky window.Monte Carlo simulations were also used to determine the macroscopic optical properties of La_(2)O_(3)and HfO_(2)coatings.Based on the simulated results,we identified that the particle size and particle volume fraction play a dominant role in the optical properties.Our findings underscore the potential of La_(2)O_(3)and HfO_(2)nanocomposites for environment-friendly cooling and offer a new approach for high-throughput screening of optical materials through multiscale simulations.展开更多
The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general condit...The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general conditions for open and fixed natural boundaries with an arbitrary reflection coefficient and phase shift are also given in this paper. The systematical tests of numerical simulation show that the theoretical models, the finite-difference algorithms and the boundary conditions can give good calculation results for the wave propagating in shallow and deep water with an arbitrary slope varying from gentle to steep.展开更多
In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to stud...In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to study the effect of assimilating the sea-wind data from QuikSCAT on the prediction of typhoon track and intensity. The case of Typhoon Dujuan (2003) is first tested and the results show appreciable improvements. Twelve other cases in 2003 are then evaluated. The assimilation of the QuikSCAT data produces significant impacts on the structure of Dujuan in terms of the horizontal and vertical winds, sea-level pressure and temperature at the initial time. With the assimilation, the 24-h (48-h) track prediction of 11 (10) out of the 12 typhoons is improved. The 24-h (48-h) prediction of typhoon intensity is also improved in 10 (9) of the 12 cases. These experiments therefore demonstrate that assimilation of the QuikSCAT sea-wind data can increase the accuracy of typhoon track and intensity predictions through modification of the initial fields associated with the typhoon.展开更多
In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fi...In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.展开更多
This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensio...This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.展开更多
The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon- germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulat...The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon- germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulations. The influences of device structure and doping concentration on SEEs are discussed via analysis of current transient and charge collection induced by ions strike. The results show that the SEEs representation of current transient is different from representation of the charge collection for the same process parameters. To be specific, the area of C/S junction is the key parameter that affects charge collection of SEE. Both current transient and charge collection are dependent on the doping of collector and substrate. The base doping slightly influences transient currents of base, emitter, and collector terminals. However, the SEEs of SiGe HBT are hardly affected by the doping of epitaxial base and the content of Ge.展开更多
To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar syst...To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.展开更多
Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extractio...Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.展开更多
A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former...A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former is much larger than the later. Our test shows that the SGS dissipation of Vreman model is smaller than the Smagorinsky model. We mainly simulate the experiment of fluid instability of shock-accelerated interface by Poggi in this paper. The decay of the turbulent kinetic energy before the first reflected shock wave–mixing zone interaction and its strong enhancement by re-shocks are presented in our numerical simulations. The computational mixing zone width under double re-shock agreement well with the experiment, and the decaying law of the turbulent kinetic energy is consistent with Mohamed and Larue’s investigation. Also, by using MVFT3D we give some simulation results of the inverse Chevron model from AWE. The numerical simulations presented in this paper allow us to characterize and better understand the Richtmyer-Meshkov instability induced turbulence, and the code MVFT3D is validated.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for com...Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for complex underground models in a three-dimensional(3-D)numerical simulation of a geothermal fi eld,a mixed space-wavenumber domain 3-D numerical simulation algorithm is proposed in this paper.According to the superposition principle of temperature field,the geothermal field is decomposed into background and abnormal temperature fi elds for calculation.The uniform layered model is used to solve the background field.When the abnormal field is solved,the horizontal two-dimensional(2-D)Fourier transform is used to transform the 3-D diff erential equation satisfi ed by an abnormal field into a series of one-dimensional ordinary differential equations with diff erent wavenumbers,which greatly reduces the calculation and storage.The unit division of an ordinary diff erential equation is fl exible,and the calculation amount is small.The algorithm fully takes advantage of the effi ciency of the Fourier transform and the quickness of the catch-up method to solve linear equations with a fixed bandwidth,which effectively improves the computational efficiency.Compared with the COMSOL Multiphysics professional simulation finite element software,the time consumption and memory requirements of the algorithm proposed in this paper are reduced by multiple orders of magnitude in terms of ensuring accuracy and the same mesh division.The more the number of calculated nodes is,the more obvious is the advantage.We design models to study the thermal conductivity,heat fl ux boundary,regional tectonic morphology,and topographic relief of the geothermal fi eld distribution.A 3-D geophysical model is developed based on topographic elevation data,geothermal geology,and geophysical exploration data in the Qiabuqia area of Gonghe Basin,Qinghai Province,China.Numerical simulation of the geothermal fi eld in this area is realized,which shows that the algorithm is suitable for precise and effi cient simulation of an arbitrary complex terrain and geological conditions.展开更多
In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanis...In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.展开更多
GIS technology has been applied to building damage analysis around the world. However, most previous studies focused on the application of 2-D GIS technology, and the results from traditional earthquake damage predict...GIS technology has been applied to building damage analysis around the world. However, most previous studies focused on the application of 2-D GIS technology, and the results from traditional earthquake damage prediction are displayed in 2-D figures and charts, which is incapable of demonstrating the 3-D spatial characteristics of buildings. Taking brick-concrete building as an example, we study the characteristics of building damage, and effectively combine the information of building textures and earthquake damage. Then, we apply Google SketchUp techniques to create building models and display them with seismic damage texture in the ArcGIS Engine software development environment. In this paper we propose a solid idea for 3-D simulation of earthquake damage, which is helpful in earthquake damage prediction, virtual emergency rescue practice and earthquake knowledge education.展开更多
The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated...The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr).展开更多
The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow inst...The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.展开更多
An SOI MOSFET with FINFET structure is simulated using a 3 D simulator. I V characteristics and sub threshold characteristics,as well as the short channel effect(SCE) are carefully investigated.SCE can be well c...An SOI MOSFET with FINFET structure is simulated using a 3 D simulator. I V characteristics and sub threshold characteristics,as well as the short channel effect(SCE) are carefully investigated.SCE can be well controlled by reducing fin height.Good performance can be achieved with thin height,so fin height is considered as a key parameter in device design.Simulation results show that FINFETs present performance superior to conventional single gate devices.展开更多
Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results ...Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results demonstrate that biases in the range 1.62 to 1.98V influence DSET current shape greatly and total collected charge weakly. Peak current and charge collection within 2ns decreases as temperature increases,and temperature has a stronger influence on SET currents than on total charge. Typical variation of substrate concentration in modern VDSM processes has a negligible effect on SEEs. Both peak current and total collection charge increases as LET increases.展开更多
基金Project(10964004)supported by the National Natural Science Foundation of ChinaProject(20070231001)supported by Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(096RJZA104)supported by the Natural Science Foundation of Gansu Province,ChinaProject(SB14200801)supported by the Doctoral Fund of Lanzhou University of Technology
文摘A accelerated arithmetic algorithm of the dynamic computing regions was designed,and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented.The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated.The effects of cooling rate on dendritic patterns and microsegregation patterns were studied.The computed results indicate that,with the increment of the cooling rate,the dendritic growth velocity increases,both the main branch and side-branches become slender,the secondary dendrite arm spacing becomes smaller,the inadequate solute diffusion in solid aggravates,and the severity of microsegregation ahead of interface aggravates.At a higher cooling rate,the binary alloy presents recalescence;while the cooling rate is small,no recalescence occurs.
文摘Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.
基金supported by the National Natural Science Foundation of China(No.12305239)Scientific Research Foundation of Chongqing University of Technology(No.2023ZDZ053)National Key R&D Program of China(No.2019YFE03010001).
文摘To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system.
基金the National Natural Science Foundation of China(Grant Nos.U23A20565,52301194,and 52101178)the Shanghai Science and Technology Commission(Grant No.22511100400)+1 种基金the startup funding from Shanghai Jiao Tong University(Grant No.WH220405009)Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD15)for providing funding support for this research。
文摘Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performance of radiative cooling materials remains elusive,limiting insight into the underlying physics of their optical response and cooling efficacy.La_(2)O_(3)and HfO_(2),which represent rare earth and third/fourth subgroup inorganic oxides,respectively,show promise for radiative cooling applications.In this study,we used multiscale simulations to investigate the optical properties of La_(2)O_(3)and HfO_(2)across a broad spectrum.First-principles calculations revealed their dielectric functions and intrinsic refractive indices,and the results indicated that the slightly smaller bandgap of La_(2)O_(3)compared to HfO_(2)induces a higher refractive index in the solar band.Additionally,three-phonon scattering was found to provide more accurate infrared optical properties than two-phonon scattering,which enhanced the emissivity in the sky window.Monte Carlo simulations were also used to determine the macroscopic optical properties of La_(2)O_(3)and HfO_(2)coatings.Based on the simulated results,we identified that the particle size and particle volume fraction play a dominant role in the optical properties.Our findings underscore the potential of La_(2)O_(3)and HfO_(2)nanocomposites for environment-friendly cooling and offer a new approach for high-throughput screening of optical materials through multiscale simulations.
文摘The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general conditions for open and fixed natural boundaries with an arbitrary reflection coefficient and phase shift are also given in this paper. The systematical tests of numerical simulation show that the theoretical models, the finite-difference algorithms and the boundary conditions can give good calculation results for the wave propagating in shallow and deep water with an arbitrary slope varying from gentle to steep.
基金This research was supported by the National Natural Science Foundation of China under Grant No.40333025.
文摘In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to study the effect of assimilating the sea-wind data from QuikSCAT on the prediction of typhoon track and intensity. The case of Typhoon Dujuan (2003) is first tested and the results show appreciable improvements. Twelve other cases in 2003 are then evaluated. The assimilation of the QuikSCAT data produces significant impacts on the structure of Dujuan in terms of the horizontal and vertical winds, sea-level pressure and temperature at the initial time. With the assimilation, the 24-h (48-h) track prediction of 11 (10) out of the 12 typhoons is improved. The 24-h (48-h) prediction of typhoon intensity is also improved in 10 (9) of the 12 cases. These experiments therefore demonstrate that assimilation of the QuikSCAT sea-wind data can increase the accuracy of typhoon track and intensity predictions through modification of the initial fields associated with the typhoon.
基金Project(51038004) supported by the National Natural Science Foundation of China
文摘In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.
文摘This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274106,11175138,and 61601352)
文摘The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon- germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulations. The influences of device structure and doping concentration on SEEs are discussed via analysis of current transient and charge collection induced by ions strike. The results show that the SEEs representation of current transient is different from representation of the charge collection for the same process parameters. To be specific, the area of C/S junction is the key parameter that affects charge collection of SEE. Both current transient and charge collection are dependent on the doping of collector and substrate. The base doping slightly influences transient currents of base, emitter, and collector terminals. However, the SEEs of SiGe HBT are hardly affected by the doping of epitaxial base and the content of Ge.
文摘To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.
文摘Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.
文摘A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former is much larger than the later. Our test shows that the SGS dissipation of Vreman model is smaller than the Smagorinsky model. We mainly simulate the experiment of fluid instability of shock-accelerated interface by Poggi in this paper. The decay of the turbulent kinetic energy before the first reflected shock wave–mixing zone interaction and its strong enhancement by re-shocks are presented in our numerical simulations. The computational mixing zone width under double re-shock agreement well with the experiment, and the decaying law of the turbulent kinetic energy is consistent with Mohamed and Larue’s investigation. Also, by using MVFT3D we give some simulation results of the inverse Chevron model from AWE. The numerical simulations presented in this paper allow us to characterize and better understand the Richtmyer-Meshkov instability induced turbulence, and the code MVFT3D is validated.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
基金supported by National Natural Science Foundation of China (No. 41574127, 42174080)Innovation research team project of Guangxi Natural Science Foundation (No. GXNSFGA380004)Central South University independent exploration and innovation project for Postgraduates (Nos. 2021zzts0831, 2021zzts0271)
文摘Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for complex underground models in a three-dimensional(3-D)numerical simulation of a geothermal fi eld,a mixed space-wavenumber domain 3-D numerical simulation algorithm is proposed in this paper.According to the superposition principle of temperature field,the geothermal field is decomposed into background and abnormal temperature fi elds for calculation.The uniform layered model is used to solve the background field.When the abnormal field is solved,the horizontal two-dimensional(2-D)Fourier transform is used to transform the 3-D diff erential equation satisfi ed by an abnormal field into a series of one-dimensional ordinary differential equations with diff erent wavenumbers,which greatly reduces the calculation and storage.The unit division of an ordinary diff erential equation is fl exible,and the calculation amount is small.The algorithm fully takes advantage of the effi ciency of the Fourier transform and the quickness of the catch-up method to solve linear equations with a fixed bandwidth,which effectively improves the computational efficiency.Compared with the COMSOL Multiphysics professional simulation finite element software,the time consumption and memory requirements of the algorithm proposed in this paper are reduced by multiple orders of magnitude in terms of ensuring accuracy and the same mesh division.The more the number of calculated nodes is,the more obvious is the advantage.We design models to study the thermal conductivity,heat fl ux boundary,regional tectonic morphology,and topographic relief of the geothermal fi eld distribution.A 3-D geophysical model is developed based on topographic elevation data,geothermal geology,and geophysical exploration data in the Qiabuqia area of Gonghe Basin,Qinghai Province,China.Numerical simulation of the geothermal fi eld in this area is realized,which shows that the algorithm is suitable for precise and effi cient simulation of an arbitrary complex terrain and geological conditions.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604)
文摘In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.
基金supported by the Special Fund for the Scientific Research of Seismological Field in 2012 ( 201208018)
文摘GIS technology has been applied to building damage analysis around the world. However, most previous studies focused on the application of 2-D GIS technology, and the results from traditional earthquake damage prediction are displayed in 2-D figures and charts, which is incapable of demonstrating the 3-D spatial characteristics of buildings. Taking brick-concrete building as an example, we study the characteristics of building damage, and effectively combine the information of building textures and earthquake damage. Then, we apply Google SketchUp techniques to create building models and display them with seismic damage texture in the ArcGIS Engine software development environment. In this paper we propose a solid idea for 3-D simulation of earthquake damage, which is helpful in earthquake damage prediction, virtual emergency rescue practice and earthquake knowledge education.
基金Project (51101022) supported by the National Natural Science Foundation of ChinaProject (CHD2012JC096) supported by the Fundamental Research Funds for the Central Universities,China
文摘The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr).
基金Project(2011ZX04014-051)supported by the Key Scientific and Technical Project of ChinaProjects(51375306,50905110)supported by the National Natural Science Foundation of China
文摘The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.
文摘An SOI MOSFET with FINFET structure is simulated using a 3 D simulator. I V characteristics and sub threshold characteristics,as well as the short channel effect(SCE) are carefully investigated.SCE can be well controlled by reducing fin height.Good performance can be achieved with thin height,so fin height is considered as a key parameter in device design.Simulation results show that FINFETs present performance superior to conventional single gate devices.
文摘Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results demonstrate that biases in the range 1.62 to 1.98V influence DSET current shape greatly and total collected charge weakly. Peak current and charge collection within 2ns decreases as temperature increases,and temperature has a stronger influence on SET currents than on total charge. Typical variation of substrate concentration in modern VDSM processes has a negligible effect on SEEs. Both peak current and total collection charge increases as LET increases.