Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D g...Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS...An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS) technique,and a 2D profile can be calculated and generated automatically through Boolean operation to meet the demands of dredging projects.Moreover,an automatic marking method for geological attributes is put forward based on database technology,and the geological attributes include the profile name,scale,horizontal and vertical relative coordinates,geological lithology,and 2D standard lithology legend.At the same time,the automatic marking method can also provide an interactive mode for geological engineers to edit and modify the profile in the modeling system.Practical engineering applications show that the automatic generation method is a simple,flexible,fast and precise visual graphics rendering process that can create 2D standard profiles automatically and efficiently.This method also provides a convenient support tool for geological engineering digital analysis.展开更多
Based on the Industrial Source Complex Short-Term Version 3 (ISCST3) model, a simplified modeling approach was developed to predict concentrations of congeners of polychlorinated-p-dioxins and dibenzofurans (PCDD/F...Based on the Industrial Source Complex Short-Term Version 3 (ISCST3) model, a simplified modeling approach was developed to predict concentrations of congeners of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) of agricultural soil, within a radius of 3 kin from a municipal solid waste incinerator (MSWI) plant after its 4-year operation in Hangzhou, China. Comparisons were made between the measured and estimated congener-specific concentrations and the international-toxic equivalent (I-TEQ) values of soil samples with respect to distance from the stack. The results indicate that the predictions of soil PCDD/F concentrations and K-TEQ values were generally lower than their observations, and that the higher the degree of underestimation seems, the greater the further downwind one gets. Nevertheless, most of the predictions were in good agreement with the trend of measured ones and were within a factor of ten for samples located within 1 kin of the plant. Besides, analysis of contributions of various deposition pathways confirms that in addition to wet particle deposition, the dry gaseous deposition is essential for realistic prediction of PCDD/F depositions to soil, especially for tetra- and penta-chlorinated dioxins.展开更多
Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevatio...Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevation model) superposed surface images and geo-hazards elements. Based on landslides and other geo-hazard survey data,using improved B-REP(boundary representa-tion)entity data structure (two-body 3D data structure), we set up 3D solid models for each hazardous bodies in each hazardous geological maps. Then we integrate the two types of 3D models with different scales from area to point, which are the regional geo-hazard 3D model and the solid models of each disaster body, in order to provide a visual processing and analysis plat-form for danger partition, stability evaluation, disaster prevention and control, early warning and command.展开更多
The present study reports a systematic computational analysis of the performance of solid oxide metalair redox battery operated at 800 and 550 ℃ using a recently developed high-fidelity multiphysics model.Two sets of...The present study reports a systematic computational analysis of the performance of solid oxide metalair redox battery operated at 800 and 550 ℃ using a recently developed high-fidelity multiphysics model.Two sets of parameters are particularly investigated:(1) operational parameters including current density and depth of discharge;(2) performance parameters including the chemical reaction kinetic rate constant of the redox cycle unit and exchange current density of the regenerative solid oxide fuel cell.These two groups of parameters are particularly analyzed with the goal to achieve high specific energy and round trip efficiency for SOIARB operated at different operating temperatures.展开更多
Constraint-based solid modeling is the kernel part of current CADsystems. It has been widely used in supporting detailed design and variational design. However, it cannot support early stage design and is not easy-to-...Constraint-based solid modeling is the kernel part of current CADsystems. It has been widely used in supporting detailed design and variational design. However, it cannot support early stage design and is not easy-to--use becauseit demands fully detailed input description of a design. To solve these problems,researchers attempt to incorporate virtual reality techniques into geometric modeling systems. This paper presents a novel approach for interactive constraint-basedsolid modeling in a virtual reality environment. The approach allows the designerto construct and edit a constraint-based solid model by direct 3D manipulations,and ensures the created solid model to be precise by recognizing and solving geometric constraints. To effectively support 3D manipulations and change propagation,a new constraint-based solid model is adopted. In the model, besides the normalconstituents of the typical constraint-based solid model, some new attributes likeshape control points, location pattern and explicit shape constraints of a primitiveare defined. Guided by the location pattern, our algorithms for recognizing andsolving location constraints are real-time.展开更多
文摘Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS) technique,and a 2D profile can be calculated and generated automatically through Boolean operation to meet the demands of dredging projects.Moreover,an automatic marking method for geological attributes is put forward based on database technology,and the geological attributes include the profile name,scale,horizontal and vertical relative coordinates,geological lithology,and 2D standard lithology legend.At the same time,the automatic marking method can also provide an interactive mode for geological engineers to edit and modify the profile in the modeling system.Practical engineering applications show that the automatic generation method is a simple,flexible,fast and precise visual graphics rendering process that can create 2D standard profiles automatically and efficiently.This method also provides a convenient support tool for geological engineering digital analysis.
基金Project (Nos. X506312 and X206955) supported by the NaturalScience Foundation of Zhejiang Province, China
文摘Based on the Industrial Source Complex Short-Term Version 3 (ISCST3) model, a simplified modeling approach was developed to predict concentrations of congeners of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) of agricultural soil, within a radius of 3 kin from a municipal solid waste incinerator (MSWI) plant after its 4-year operation in Hangzhou, China. Comparisons were made between the measured and estimated congener-specific concentrations and the international-toxic equivalent (I-TEQ) values of soil samples with respect to distance from the stack. The results indicate that the predictions of soil PCDD/F concentrations and K-TEQ values were generally lower than their observations, and that the higher the degree of underestimation seems, the greater the further downwind one gets. Nevertheless, most of the predictions were in good agreement with the trend of measured ones and were within a factor of ten for samples located within 1 kin of the plant. Besides, analysis of contributions of various deposition pathways confirms that in addition to wet particle deposition, the dry gaseous deposition is essential for realistic prediction of PCDD/F depositions to soil, especially for tetra- and penta-chlorinated dioxins.
基金supported by the 3D Model Library of Geo-hazards in the 3GR (No. SXJC-3ZH1A7)the software development of 3D area disaster geology map in the 3GR (No. SXJC-3ZH1A6)+1 种基金survey data acquisition and geologic map CAD system in the 3GR (No. SXKY4-02)985 Platform Projects,3D modeling and space analysis system of geo-hazards and the National Natural Science Foundation of China (No. 41172300)
文摘Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevation model) superposed surface images and geo-hazards elements. Based on landslides and other geo-hazard survey data,using improved B-REP(boundary representa-tion)entity data structure (two-body 3D data structure), we set up 3D solid models for each hazardous bodies in each hazardous geological maps. Then we integrate the two types of 3D models with different scales from area to point, which are the regional geo-hazard 3D model and the solid models of each disaster body, in order to provide a visual processing and analysis plat-form for danger partition, stability evaluation, disaster prevention and control, early warning and command.
基金supported by the Advanced Research Projects Agency-Energy(ARPA-E),U.S.Department of Energy,under Award Number DE-AR0000492
文摘The present study reports a systematic computational analysis of the performance of solid oxide metalair redox battery operated at 800 and 550 ℃ using a recently developed high-fidelity multiphysics model.Two sets of parameters are particularly investigated:(1) operational parameters including current density and depth of discharge;(2) performance parameters including the chemical reaction kinetic rate constant of the redox cycle unit and exchange current density of the regenerative solid oxide fuel cell.These two groups of parameters are particularly analyzed with the goal to achieve high specific energy and round trip efficiency for SOIARB operated at different operating temperatures.
文摘Constraint-based solid modeling is the kernel part of current CADsystems. It has been widely used in supporting detailed design and variational design. However, it cannot support early stage design and is not easy-to--use becauseit demands fully detailed input description of a design. To solve these problems,researchers attempt to incorporate virtual reality techniques into geometric modeling systems. This paper presents a novel approach for interactive constraint-basedsolid modeling in a virtual reality environment. The approach allows the designerto construct and edit a constraint-based solid model by direct 3D manipulations,and ensures the created solid model to be precise by recognizing and solving geometric constraints. To effectively support 3D manipulations and change propagation,a new constraint-based solid model is adopted. In the model, besides the normalconstituents of the typical constraint-based solid model, some new attributes likeshape control points, location pattern and explicit shape constraints of a primitiveare defined. Guided by the location pattern, our algorithms for recognizing andsolving location constraints are real-time.