3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO-6Fe203(30%), SiC(35%) and Ti02(35%), sintered at 1200C in N2. T...3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO-6Fe203(30%), SiC(35%) and Ti02(35%), sintered at 1200C in N2. The dielectric and magnetic parameters of such 3DRCs and their SCCDs were measured respectively in a temperature range from room temperature to 800癈 and in a frequency range from 2.6 GHz to 18 GHz. The results showed that the dielectric and magnetic loss of 3DRCs were obviously larger than those of their SCCDs in a wide range of temperature and the whole range of measuring frequency. The increase of dielectric loss of SDRCs was much higher than that of magnetic loss compared to their SCCDs, which was found due to the 3D net structure extrinsic characteristics.展开更多
Objective To assess stresses produced by different obturator prostheses. Methods Three-dimensional finite clement models of unilateral maxillary defects rehabilitated with different obturators were constructed. The di...Objective To assess stresses produced by different obturator prostheses. Methods Three-dimensional finite clement models of unilateral maxillary defects rehabilitated with different obturators were constructed. The different stresses were analyzed by three-dimensional finite element method under different load angle. Results The Von Mises stress values obtained for the remaining tissues adjacent to defect cavity were higher when rehabilitated by inferior hollow obturator in comparison with by superior hollow obturator. The maximum of Von Mises were higher when rehabilitated by resilient hollow obturator than by rigid hollow obturator. It was also observed that in the rigid type stress distribution contours formed in the remaining tissues adjacent to defect cavity, while in resilient hollow obturator prostheses the stress distributed mainly in the prosthesis itself. The oblique load shows the most maximum of Von Mises among all types of obturator prostheses. Conclusions A high lateral wall of an obturator may be more better in preserving the remaining structures than a shorter prosthesis lateral wall. A soft liner may be incorporated to reduce the pain of the residual maxillary structures and mucosa. When load on defect, higher stress would be generated to the residual maxillary structures. The adjustment of occlusual relationship is very important.展开更多
文摘3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO-6Fe203(30%), SiC(35%) and Ti02(35%), sintered at 1200C in N2. The dielectric and magnetic parameters of such 3DRCs and their SCCDs were measured respectively in a temperature range from room temperature to 800癈 and in a frequency range from 2.6 GHz to 18 GHz. The results showed that the dielectric and magnetic loss of 3DRCs were obviously larger than those of their SCCDs in a wide range of temperature and the whole range of measuring frequency. The increase of dielectric loss of SDRCs was much higher than that of magnetic loss compared to their SCCDs, which was found due to the 3D net structure extrinsic characteristics.
文摘Objective To assess stresses produced by different obturator prostheses. Methods Three-dimensional finite clement models of unilateral maxillary defects rehabilitated with different obturators were constructed. The different stresses were analyzed by three-dimensional finite element method under different load angle. Results The Von Mises stress values obtained for the remaining tissues adjacent to defect cavity were higher when rehabilitated by inferior hollow obturator in comparison with by superior hollow obturator. The maximum of Von Mises were higher when rehabilitated by resilient hollow obturator than by rigid hollow obturator. It was also observed that in the rigid type stress distribution contours formed in the remaining tissues adjacent to defect cavity, while in resilient hollow obturator prostheses the stress distributed mainly in the prosthesis itself. The oblique load shows the most maximum of Von Mises among all types of obturator prostheses. Conclusions A high lateral wall of an obturator may be more better in preserving the remaining structures than a shorter prosthesis lateral wall. A soft liner may be incorporated to reduce the pain of the residual maxillary structures and mucosa. When load on defect, higher stress would be generated to the residual maxillary structures. The adjustment of occlusual relationship is very important.