Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use...Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.展开更多
A series of 6-fluoro-3,3a,4,5-tetrahydro-2H-pyrazolo[4,3-c]quinoline-2-carboxamide derivatives was designed based on the bioisosterism and combination principle in drug design. The target compounds were synthesized fr...A series of 6-fluoro-3,3a,4,5-tetrahydro-2H-pyrazolo[4,3-c]quinoline-2-carboxamide derivatives was designed based on the bioisosterism and combination principle in drug design. The target compounds were synthesized from substituted aniline through Michael addition, cyclization, Mannich reaction and condensation with 4-substituted semicarbazides, and the structures were confirmed by mass spectrometry(MS) and 1H NMR. The antifungal assay was carried out in vitro by two-fold dilution. The result shows that all the compounds are of antifungal activities against the tested fungi at different levels.展开更多
The title compound ethyl 2-(6-(1,3-dioxo-4,5,6,7-tetrahydro-lH-isoindol-2(3H)- yl)-7-fluoro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) butanoate 3 was synthesized by the reaction of ethyl 2-(6-amino-7-fluoro-3-ox...The title compound ethyl 2-(6-(1,3-dioxo-4,5,6,7-tetrahydro-lH-isoindol-2(3H)- yl)-7-fluoro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) butanoate 3 was synthesized by the reaction of ethyl 2-(6-amino-7-fluoro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) butanoate with 4,5,6,7- tetraydrophthalic anhydride, and its structure was determined by X-ray single-crystal diffraction. The crystal belongs to the monoclinic system, space group P2 1/n with a = 9.3469(2), b = 16.7715(5), c = 13.7153(4) A, β= 104.9680(10)°, μ = 0.107 mm^-1, Mr = 430.42, V= 2077.08(10) ,A3, Z= 4, Dc = 1.376 g/cm3, F(000) = 904, T= 296(2) K, R = 0.0508 and wR = 0.1478.展开更多
2-Butoxy-5-fluoro-3H-4-pyrimidone derivatives of D-glucuronic acid having 0-glycosidic linkage or N-glycosidic linkage were synthesized and their anticancer activity tested.Their structures were confirmed by elementar...2-Butoxy-5-fluoro-3H-4-pyrimidone derivatives of D-glucuronic acid having 0-glycosidic linkage or N-glycosidic linkage were synthesized and their anticancer activity tested.Their structures were confirmed by elementary analysis,IR spectra and ~1HNMR.展开更多
3-methyl-4-nitrophenol (MNP) is the main by-product of the organophosphate insecticide fenitrothion (FT), used in locust control. MNP is highly toxic because it is an endocrine disruptor and then may cause adverse in ...3-methyl-4-nitrophenol (MNP) is the main by-product of the organophosphate insecticide fenitrothion (FT), used in locust control. MNP is highly toxic because it is an endocrine disruptor and then may cause adverse in the biological systems. Then, it is necessary to develop analytical methods for determination of this pollutant in the environment. In this sense, we reported herein the development of an electrochemical sensor for the detection of 3-methyl-4-nitrophenol (MNP), one of the metabolites of fenitrothion (FT), by using naked and modified carbon fiber microelectrode (CFME) by nickel tetrasulfonated phthalocyanine polymer (CFME/p-NiTSPc). The voltammogram showed that MNP presents one irreversible anodic peak corresponding to the oxidation of the phenol group at 0.9 V vs Ag/AgCl. The effect of pH of the buffer on the peak current and SWV parameters such as frequency, scan increment and pulse amplitude were investigated in order to optimize the electrochemical response of the sensor. The obtained results lead to the following optimum value: pH = 6;frequency = 25 Hz, pulse amplitude = 50 mV, scan increment = 10 mV. With these optimum values, the calibration curves show that the peak current varied linearly upon MNP concentration leading to a limit of detection (LoD) for naked CFME close to 3 μg/L whereas for CFME modified by p-NiTSPc, it reaches 0.75 μg/L. This results prove that the presence of p-NiTSPc increasing the sensitivity of the sensor could be used to monitor 3-methyl-4-nitrophenol residue in real matrix.展开更多
Toward the imperative treatment of the industrial wastewater containing 4-nitrophenol(4-NP)and industrial solid waste red mud(RM),an innovative approach of“Using waste to treat waste”is developed.Valuable element Al...Toward the imperative treatment of the industrial wastewater containing 4-nitrophenol(4-NP)and industrial solid waste red mud(RM),an innovative approach of“Using waste to treat waste”is developed.Valuable element Al is leached from the RM first,the resultant NaAlO_(2) solution is hydrothermally converted toγ-AlOOH hierarchical porous microspheres(RMγ-AlOOH HPMSs,average diameter:2.0μm,SBET:77.81 m^(2) g^(-1),pore volume:0.38 cm^(3) g^(-1))in the presence of urea.The subsequent mild thermal conversion results inγ-Al_(2)O_(3) hierarchical porous microspheres(RMγ-Al_(2)O_(3) HPMSs).Both of the RMγ-AlOOH and RMγ-Al_(2)O_(3) HPMSs are employed as the Pd catalyst support for the catalytic reduction of 4-NP.Particularly,the as-obtained composite Pd/RMγ-AlOOH and Pd/RMγ-Al_(2)O_(3) exhibit excellent catalytic activities with superior knor as 8204.5 and 4831.4 s^(-1) g^(-1),respectively,significantly higher than that of most Pd based catalysts.Moreover,the excellent catalytic stability and durability of the Pd/RMγ-AlOOH and Pd/RMγ-Al_(2)O_(3) within 10 successive cycles of reduction enable the present industrial solid waste RM inducedγ-AlOOH andγ-Al_(2)O_(3) HPMSs as great promising Pd catalyst support for the reduction of the industrial wastewater containing 4-NP.展开更多
In this work,a simple synthesis of sulfur doped graphitic carbon nitride(S-g-C3N4)act as a support cum stabilizers for gold nanoparticles(Au)and its was characterized by UV–vis and XRD to measure the absorbance and c...In this work,a simple synthesis of sulfur doped graphitic carbon nitride(S-g-C3N4)act as a support cum stabilizers for gold nanoparticles(Au)and its was characterized by UV–vis and XRD to measure the absorbance and crystallinity,respectively.The functional group and morphology of the samples were identified using FT-IR and TEM.Finally,the Au@S-g-C3N4 nanocatalyst exhibits good catalytic performance and stability in the reduction of hazardous 4-nitrophenol(NP)compared to S-g-C3N4 using Na BH4.Moreover,the Au@S-g-C3N4 nanocomposite holds a good catalytic efficiency(near 100%)achieved by within 5 min.The highest catalytic reduction of NP is due to the synergistic effect of Au nanoparticles decorated on S-g-C3N4.The fast electron transfer reduction mechanism was elucidated and discussed.Excellent reusability and stability of the developed nanocomposites were also observed in consecutive reduction experiments.The filtering and catalyzing device was used for the direct conversion of NP polluted water.This method can open a new avenue for the metal nanoparticles based carbon materials heterogeneous catalyst and its reduction of toxic contaminants.展开更多
In this study,an efficient catalyst Ag@g-C_(3)N_(4) nanocomposite was successfully synthesized through a simple green reaction,and the characterizations through XRD,FTIR,SEM,BET and XPS were also studied.The activitie...In this study,an efficient catalyst Ag@g-C_(3)N_(4) nanocomposite was successfully synthesized through a simple green reaction,and the characterizations through XRD,FTIR,SEM,BET and XPS were also studied.The activities of Ag@g-C_(3)N_(4) were investigated toward the reduction of 4-nitrophenol to their corresponding aminophenol compounds in the presence of excess NaBH_(4) as a reducing agent.The Ag@g-C_(3)N_(4) nanocomposites exhibited high catalytic activities,in which a 92.2%4-nitrophenol conversion in 10 min and the apparent rate constant K_(app)=264.27×10^(-3) min-1were obtained.The as-prepared Ag@g-C_(3)N_(4) nanocomposites showed great potential in catalytically inducing the reduction of 4-nitrophenol,which makes them economically and energy conservation attractive from industrial waste water treatment.展开更多
In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion metho...In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.展开更多
As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, t...As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, the alleviative effect of a common antioxidant flavonoid quercetin on mouse germ cells intoxicated by PNMC was inves- tigated. Results showed that a single intraperitoneal injection of PNMC at 100 mg/kg induced severe testicular damage after one week. PNMC-treated mice showed a significant loss of germ cells (approximate 40% loss of round germ cells). PNMC caused an increase of hydroxyl radical and hydrogen peroxide production and lipid peroxidation, as well as a decrease in glutathione level, superoxide dismutase and glutathione peroxidase activities. Furthermore, treatment of PNMC increased expression of the pro-apoptotic protein Bax and decreased expression of the anti-apoptotic protein BcI-XL in germ cells. In addition, testicular caspase-3 activity was significantly up-regulated and germ cell apoptosis was significantly increased in the PNMC-treated mice. In contrast, combined administration of quercetin at 75 mg/kg significantly attenuated PNMC-induced testicular toxicity. These results indicate that the antioxidant quercetin displays a remarkable protective effect on PNMC-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity by environmental toxicants to ensure healthy sperm production.展开更多
Graphitic carbon nitride (g-C3N4) with high photocatalytic activity toward degradation of 4-nitrophenol under visible light irradiation was prepared by HCI etching followed by ammonia neutralization. The structure, ...Graphitic carbon nitride (g-C3N4) with high photocatalytic activity toward degradation of 4-nitrophenol under visible light irradiation was prepared by HCI etching followed by ammonia neutralization. The structure, morphology, surface area, and photocatalytic properties of the prepared samples were studied. After treatment, the size of the g-C3N4 decreased from several micrometers to several hundred nanometers, and the specific area of the g-C3N4 increased from 11.5 m2/g to 115 m2/g. Meanwhile, the photocatalytic activity of g-C3N4 was significantly improved after treatment toward degradation of 4- nitrophenol under visible light irradiation. The degradation rate constant of the small particle g-C3N4 is 5.7 times of that of bulk g-C3N4, which makes it a promising visible light photocatalyst for future applications for water treatment and environmental remediation.展开更多
Magnetic Fe_3O_4@PANI@Au nanocomposites are fabricated through electrostatic self-assembly and seed growth methods.The rate constant K_(app) is calculated to be 8.63×10^(-3) s^(-1) at room temperature for the red...Magnetic Fe_3O_4@PANI@Au nanocomposites are fabricated through electrostatic self-assembly and seed growth methods.The rate constant K_(app) is calculated to be 8.63×10^(-3) s^(-1) at room temperature for the reduction of 4-nitrophenol to 4-aminophenol with an excessive amount of NaBH_4 as a model system showing outstanding catalytic efficiency and stability.For recyclable performance,the catalyst exhibits slight loss in catalytic performance on the conversion of 4-nitrophenol after running for more than 10 cycles.Besides,the smaller and simpler the structure,the easier the molecular structure can be degraded,and the faster the cationic dyes can be degraded than the anionic dyes,which can reveal the selectivity.For practical application,Congo red as a pollutant of the lake water is degraded rapidly after Fe_3O_4@PANI@Au is added to the solution in a few minutes.It has been demonstrated that magnetic Fe_3O_4@PANI@Au nanoparticle composite is a promising catalyst for environment sewage.展开更多
Catalytic degradation of organic contaminants is at the frontier of water treatment due to its selectivity,energy savings,and ability to convert harmful contaminants into harmless or even valuable chemical products fo...Catalytic degradation of organic contaminants is at the frontier of water treatment due to its selectivity,energy savings,and ability to convert harmful contaminants into harmless or even valuable chemical products for recycling.However,achieving sufficiently high performance in the catalytic removal of organic contaminants for practical application is still extremely challenging.Herein,we report a Pd-decorated TiO_(2)(Pd/TiO_(2))hierarchical vertical array for fast and efficient catalytic water treatment.Such a forest-like Pd/TiO_(2) vertical array demonstrates the following distinct advantages over conventional planar or bulk catalytic systems:1)abundant anchoring sites for nanocrystals loading;2)high sunlight absorption;3)efficient mass transfer channels for the reactants and products.As a proof of concept,the Pd/TiO_(2) array demonstrated rapid and efficient photo-assisted catalytic reduction of high concentrations of 4-nitrophenol wastewater(2 g/L,ca.14.38 mmol/L)and its feasibility for continuous flow wastewater treatment.The turnover frequency(TOF)value of the Pd/TiO_(2) array was up to 8.00 min^(-1),which was approximately 4.2 times that of planar Pd/TiO_(2) film with the same area(1.91 min^(-1)).Our strategy of incorporating nanocatalysts with a hierarchical vertical array provides a promising approach to boosting the catalytic performance of catalysts for different chemical reactions.展开更多
文摘Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.
基金Supported by the National Science and Technology Major Projects of China(No.2009ZX09301-012)
文摘A series of 6-fluoro-3,3a,4,5-tetrahydro-2H-pyrazolo[4,3-c]quinoline-2-carboxamide derivatives was designed based on the bioisosterism and combination principle in drug design. The target compounds were synthesized from substituted aniline through Michael addition, cyclization, Mannich reaction and condensation with 4-substituted semicarbazides, and the structures were confirmed by mass spectrometry(MS) and 1H NMR. The antifungal assay was carried out in vitro by two-fold dilution. The result shows that all the compounds are of antifungal activities against the tested fungi at different levels.
基金Supported by the National Natural Science Foundation of China (20872033, 20575019)Natural Science Foundation of Hunan Province (07JJ1003)+1 种基金Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) (KLCBTCMR2008-14)Scientific Research Fund of Science and Technology Department of Hunan Province (No. 2006GK3067)
文摘The title compound ethyl 2-(6-(1,3-dioxo-4,5,6,7-tetrahydro-lH-isoindol-2(3H)- yl)-7-fluoro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) butanoate 3 was synthesized by the reaction of ethyl 2-(6-amino-7-fluoro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) butanoate with 4,5,6,7- tetraydrophthalic anhydride, and its structure was determined by X-ray single-crystal diffraction. The crystal belongs to the monoclinic system, space group P2 1/n with a = 9.3469(2), b = 16.7715(5), c = 13.7153(4) A, β= 104.9680(10)°, μ = 0.107 mm^-1, Mr = 430.42, V= 2077.08(10) ,A3, Z= 4, Dc = 1.376 g/cm3, F(000) = 904, T= 296(2) K, R = 0.0508 and wR = 0.1478.
基金This project supported by the Natural Science Foundation of Shandong.
文摘2-Butoxy-5-fluoro-3H-4-pyrimidone derivatives of D-glucuronic acid having 0-glycosidic linkage or N-glycosidic linkage were synthesized and their anticancer activity tested.Their structures were confirmed by elementary analysis,IR spectra and ~1HNMR.
文摘3-methyl-4-nitrophenol (MNP) is the main by-product of the organophosphate insecticide fenitrothion (FT), used in locust control. MNP is highly toxic because it is an endocrine disruptor and then may cause adverse in the biological systems. Then, it is necessary to develop analytical methods for determination of this pollutant in the environment. In this sense, we reported herein the development of an electrochemical sensor for the detection of 3-methyl-4-nitrophenol (MNP), one of the metabolites of fenitrothion (FT), by using naked and modified carbon fiber microelectrode (CFME) by nickel tetrasulfonated phthalocyanine polymer (CFME/p-NiTSPc). The voltammogram showed that MNP presents one irreversible anodic peak corresponding to the oxidation of the phenol group at 0.9 V vs Ag/AgCl. The effect of pH of the buffer on the peak current and SWV parameters such as frequency, scan increment and pulse amplitude were investigated in order to optimize the electrochemical response of the sensor. The obtained results lead to the following optimum value: pH = 6;frequency = 25 Hz, pulse amplitude = 50 mV, scan increment = 10 mV. With these optimum values, the calibration curves show that the peak current varied linearly upon MNP concentration leading to a limit of detection (LoD) for naked CFME close to 3 μg/L whereas for CFME modified by p-NiTSPc, it reaches 0.75 μg/L. This results prove that the presence of p-NiTSPc increasing the sensitivity of the sensor could be used to monitor 3-methyl-4-nitrophenol residue in real matrix.
基金supported by the State Key Laboratory of Organic-Inorganic Composites (No.oic-202101009)State Key Laboratory of Chemical Engineering (No.SKL-ChE-21A02),China。
文摘Toward the imperative treatment of the industrial wastewater containing 4-nitrophenol(4-NP)and industrial solid waste red mud(RM),an innovative approach of“Using waste to treat waste”is developed.Valuable element Al is leached from the RM first,the resultant NaAlO_(2) solution is hydrothermally converted toγ-AlOOH hierarchical porous microspheres(RMγ-AlOOH HPMSs,average diameter:2.0μm,SBET:77.81 m^(2) g^(-1),pore volume:0.38 cm^(3) g^(-1))in the presence of urea.The subsequent mild thermal conversion results inγ-Al_(2)O_(3) hierarchical porous microspheres(RMγ-Al_(2)O_(3) HPMSs).Both of the RMγ-AlOOH and RMγ-Al_(2)O_(3) HPMSs are employed as the Pd catalyst support for the catalytic reduction of 4-NP.Particularly,the as-obtained composite Pd/RMγ-AlOOH and Pd/RMγ-Al_(2)O_(3) exhibit excellent catalytic activities with superior knor as 8204.5 and 4831.4 s^(-1) g^(-1),respectively,significantly higher than that of most Pd based catalysts.Moreover,the excellent catalytic stability and durability of the Pd/RMγ-AlOOH and Pd/RMγ-Al_(2)O_(3) within 10 successive cycles of reduction enable the present industrial solid waste RM inducedγ-AlOOH andγ-Al_(2)O_(3) HPMSs as great promising Pd catalyst support for the reduction of the industrial wastewater containing 4-NP.
基金supported financially by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(No.NRF-2017R1E1A1A01074266)the Industrial Fundamental Technology Development Program(No.10076350)funded by the Ministry of Trade,Industry and Energy(MOTIE)of Korea.
文摘In this work,a simple synthesis of sulfur doped graphitic carbon nitride(S-g-C3N4)act as a support cum stabilizers for gold nanoparticles(Au)and its was characterized by UV–vis and XRD to measure the absorbance and crystallinity,respectively.The functional group and morphology of the samples were identified using FT-IR and TEM.Finally,the Au@S-g-C3N4 nanocatalyst exhibits good catalytic performance and stability in the reduction of hazardous 4-nitrophenol(NP)compared to S-g-C3N4 using Na BH4.Moreover,the Au@S-g-C3N4 nanocomposite holds a good catalytic efficiency(near 100%)achieved by within 5 min.The highest catalytic reduction of NP is due to the synergistic effect of Au nanoparticles decorated on S-g-C3N4.The fast electron transfer reduction mechanism was elucidated and discussed.Excellent reusability and stability of the developed nanocomposites were also observed in consecutive reduction experiments.The filtering and catalyzing device was used for the direct conversion of NP polluted water.This method can open a new avenue for the metal nanoparticles based carbon materials heterogeneous catalyst and its reduction of toxic contaminants.
基金Project supported by the Natural Science Foundation of Fujian Province(No.2019J01747 and 2020J01803)Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry(FJKLFBCM202104)China NSF(No.41976150)。
文摘In this study,an efficient catalyst Ag@g-C_(3)N_(4) nanocomposite was successfully synthesized through a simple green reaction,and the characterizations through XRD,FTIR,SEM,BET and XPS were also studied.The activities of Ag@g-C_(3)N_(4) were investigated toward the reduction of 4-nitrophenol to their corresponding aminophenol compounds in the presence of excess NaBH_(4) as a reducing agent.The Ag@g-C_(3)N_(4) nanocomposites exhibited high catalytic activities,in which a 92.2%4-nitrophenol conversion in 10 min and the apparent rate constant K_(app)=264.27×10^(-3) min-1were obtained.The as-prepared Ag@g-C_(3)N_(4) nanocomposites showed great potential in catalytically inducing the reduction of 4-nitrophenol,which makes them economically and energy conservation attractive from industrial waste water treatment.
文摘In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.
基金Project supported by the National Natural Science Foundation of China (No.31001041)the Chinese Universities Scientific Fund and Project of the Bureau of Education of Zhejiang Province (No.Y201018833),China
文摘As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, the alleviative effect of a common antioxidant flavonoid quercetin on mouse germ cells intoxicated by PNMC was inves- tigated. Results showed that a single intraperitoneal injection of PNMC at 100 mg/kg induced severe testicular damage after one week. PNMC-treated mice showed a significant loss of germ cells (approximate 40% loss of round germ cells). PNMC caused an increase of hydroxyl radical and hydrogen peroxide production and lipid peroxidation, as well as a decrease in glutathione level, superoxide dismutase and glutathione peroxidase activities. Furthermore, treatment of PNMC increased expression of the pro-apoptotic protein Bax and decreased expression of the anti-apoptotic protein BcI-XL in germ cells. In addition, testicular caspase-3 activity was significantly up-regulated and germ cell apoptosis was significantly increased in the PNMC-treated mice. In contrast, combined administration of quercetin at 75 mg/kg significantly attenuated PNMC-induced testicular toxicity. These results indicate that the antioxidant quercetin displays a remarkable protective effect on PNMC-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity by environmental toxicants to ensure healthy sperm production.
基金the Guangdong Natural Science Foundation (No.S2012010008383) for financial support
文摘Graphitic carbon nitride (g-C3N4) with high photocatalytic activity toward degradation of 4-nitrophenol under visible light irradiation was prepared by HCI etching followed by ammonia neutralization. The structure, morphology, surface area, and photocatalytic properties of the prepared samples were studied. After treatment, the size of the g-C3N4 decreased from several micrometers to several hundred nanometers, and the specific area of the g-C3N4 increased from 11.5 m2/g to 115 m2/g. Meanwhile, the photocatalytic activity of g-C3N4 was significantly improved after treatment toward degradation of 4- nitrophenol under visible light irradiation. The degradation rate constant of the small particle g-C3N4 is 5.7 times of that of bulk g-C3N4, which makes it a promising visible light photocatalyst for future applications for water treatment and environmental remediation.
基金supported by the National Natural Science Foundation of China(Grant No.11272232)Science and Technology Supporting Major Project of Tianjin City(Grant No.16YFZCSY00850)
文摘Magnetic Fe_3O_4@PANI@Au nanocomposites are fabricated through electrostatic self-assembly and seed growth methods.The rate constant K_(app) is calculated to be 8.63×10^(-3) s^(-1) at room temperature for the reduction of 4-nitrophenol to 4-aminophenol with an excessive amount of NaBH_4 as a model system showing outstanding catalytic efficiency and stability.For recyclable performance,the catalyst exhibits slight loss in catalytic performance on the conversion of 4-nitrophenol after running for more than 10 cycles.Besides,the smaller and simpler the structure,the easier the molecular structure can be degraded,and the faster the cationic dyes can be degraded than the anionic dyes,which can reveal the selectivity.For practical application,Congo red as a pollutant of the lake water is degraded rapidly after Fe_3O_4@PANI@Au is added to the solution in a few minutes.It has been demonstrated that magnetic Fe_3O_4@PANI@Au nanoparticle composite is a promising catalyst for environment sewage.
基金supported by the National Natural Science Foundation of China(Nos.22072104 and 21822202)the“Nano Frontier”Key Special Project of the National Key R&D Program of China(Nos.2022YFA1200129,2022YFA1205303 and 2022YFA1205300)+1 种基金the Project of the Suzhou Key Laboratory of Surface and Interface of Intelligent Matter,China(No.SZS_(2)022011)the Project Funded by CIC and the 111 Project.
文摘Catalytic degradation of organic contaminants is at the frontier of water treatment due to its selectivity,energy savings,and ability to convert harmful contaminants into harmless or even valuable chemical products for recycling.However,achieving sufficiently high performance in the catalytic removal of organic contaminants for practical application is still extremely challenging.Herein,we report a Pd-decorated TiO_(2)(Pd/TiO_(2))hierarchical vertical array for fast and efficient catalytic water treatment.Such a forest-like Pd/TiO_(2) vertical array demonstrates the following distinct advantages over conventional planar or bulk catalytic systems:1)abundant anchoring sites for nanocrystals loading;2)high sunlight absorption;3)efficient mass transfer channels for the reactants and products.As a proof of concept,the Pd/TiO_(2) array demonstrated rapid and efficient photo-assisted catalytic reduction of high concentrations of 4-nitrophenol wastewater(2 g/L,ca.14.38 mmol/L)and its feasibility for continuous flow wastewater treatment.The turnover frequency(TOF)value of the Pd/TiO_(2) array was up to 8.00 min^(-1),which was approximately 4.2 times that of planar Pd/TiO_(2) film with the same area(1.91 min^(-1)).Our strategy of incorporating nanocatalysts with a hierarchical vertical array provides a promising approach to boosting the catalytic performance of catalysts for different chemical reactions.