3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of...3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L^(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm^(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm^(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq^(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.展开更多
基金supported by the National Key Research and Development Program of China (2017YFA0402800)the National Natural Science Foundation of China (51403005, 51572254, 11604279)+3 种基金the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY003)Key Technologies R&D Program of He’nan Province (172102210459)Foundation of He’nan Educational Committee (16A430027)Nanhu Scholars Program for Young Scholars of Xinyang Normal University
文摘3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L^(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm^(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm^(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq^(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.