BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta...BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.展开更多
Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene pr...Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.展开更多
AIM To validate the effects of receptor interacting protein kinase-3(RIP3) deletion in non-alcoholic fatty liver disease(NAFLD) and to clarify the mechanism of action.METHODS Wild-type(WT) and RIP3 knockout(KO) mice w...AIM To validate the effects of receptor interacting protein kinase-3(RIP3) deletion in non-alcoholic fatty liver disease(NAFLD) and to clarify the mechanism of action.METHODS Wild-type(WT) and RIP3 knockout(KO) mice werefed normal chow and high fat(HF) diets for 12 wk. The body weight was assessed once weekly. After 12 wk, the liver and serum samples were extracted. The liver tissue expression levels of RIP3, microsomal triglyceride transfer protein, protein disulfide isomerase, apolipoprotein-B, X-box binding protein-1, sterol regulatory element-binding protein-1c, fatty acid synthase, cluster of differentiation-36, diglyceride acyltransferase, peroxisome proliferator-activated receptor alpha, tumor necrosis factor-alpha(TNF-α), and interleukin-6 were assessed. Oleic acid treated primary hepatocytes from WT and RIP3 KO mice were stained with Nile red. The expression of inflammatory cytokines, including chemokine(C-X-C motif) ligand(CXCL) 1, CXCL2, and TNF-α, in monocytes was evaluated.RESULTS RIP3 KO HF diet fed mice showed a significant gain in body weight, and liver weight, liver to body weight ratio, and liver triglycerides were increased in HF diet fed RIP3 KO mice compared to HF diet fed WT mice. RIP3 KO primary hepatocytes also had increased intracellular fat droplets compared to WT primary hepatocytes after oleic acid treatment. RIP3 overexpression decreased hepatic fat content. Quantitative real-time polymerase chain reaction analysis showed that the expression of very-low-density lipoproteins secretion markers(microsomal triglyceride transfer protein, protein disulfide isomerase, and apolipoprotein-B) was significantly suppressed in RIP3 KO mice. The overall NAFLD Activity Score was the same between WT and RIP3 KO mice; however, RIP3 KO mice had increased fatty change and decreased lobular inflammation compared to WT mice. Inflammatory signals(CXCL1/2, TNF-α, and interleukin-6) increased after lipopolysaccharide and pancaspase inhibitor(necroptotic condition) treatment in monocytes. Neutrophil chemokines(CXCL1, and CXCL2) were decreased, and TNF-α was increased after RIP3 inhibitor treatment in monocytes.CONCLUSION RIP3 deletion exacerbates steatosis, and partially inhibits inflammation in the HF diet induced NAFLD model.展开更多
The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for ...The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for 60 min followed by reperfusion for 24 h. Eighteen male C57BL/6 mice were randomly divided into three groups: sham-operated group(sham), IRI+saline group(IRI group), IRI+Fenofibrate(FEN) group. Normal saline or Fenofibrate(3 mg/kg) was intravenously injected 60 min before renal ischemia in IRI group and FEN group, respectively. Blood samples and renal tissues were collected at the end of reperfusion. The renal function, histopathologic changes, and the expression levels of pro-inflammatory cytokines [interleukin-8(IL-8), tumor necrosis factor alpha(TNF-α) and IL-6] in serum and renal tissue homogenate were assessed. Moreover, the effects of Fenofibrate on activating phosphoinositide 3 kinase/protein kinase B(PI3K/Akt) signaling and peroxisome proliferator-activated receptor-α(PPAR-α) were also measured in renal IRI. The results showed that plasma levels of blood urea nitrogen and creatinine, histopathologic scores and the expression levels of TNF-α, IL-8 and IL-6 were significantly lower in FEN group than in IRI group. Moreover, Fenofibrate pretreatment could further induce PI3K/Akt signal pathway and PPAR-α activation following renal IRI. These findings indicated PPAR-α activation by Fenofibrate exerts protective effects on renal IRI in mice by suppressing inflammation via PI3K/Akt activation. Thus, Fenofibrate could be a novel therapeutic alternative in renal IRI.展开更多
BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate de...BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.展开更多
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase...Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.展开更多
BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhi...BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhibitor Wortmannin in SAP associated with ALI.METHODS: Ninety rats were randomly divided into three groups: sham operation(SO) group(n=30), SAP group(n=30), and SAP+Wortmannin(SAP+W) group(n=30). SAP model was induced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct of rats. The rate of lung water content, myeloperoxidase(MPO), matrix metalloproteinase 9(MMP-9), protein kinase B(PKB), abdphosphorylation of protein kinase B(P-PKB) activity in the lung tissue were evaluated.RESULTS: In the SAP group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours(P<0.05); the rate of lung water content, MPO and TNF-α activity were also gradually increased, and the degree of lung lesion gradually increased(P<0.05). In the SAP+Wortmannin group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours; it was higher than that in the SO group(P<0.05), but significantly lower than that in the SAP group(P<0.05). The rest indicators in the SAP+Wortmannin group were also significantly decreased as compared with the SAP group(P<0.05).CONCLUSIONS: The expression of phosphatidylinositol-3 kinase/protein kinase B was elevated in severe pancreatitis rats with lung injury. This suggested that PI3 K signal transduction pathway is involved in the control and release of proinfl ammatory cytokines TNF-α, which may play an important role in the pathogenesis of severe acute pancreatitis associated with lung injury. This finding indicated that Wortmannin can block the PI3 K signal transduction pathway, and inhibit the release of infl ammatory factor TNF-α.展开更多
BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many c...BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.展开更多
Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor ...Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.展开更多
The phosphatidylinositol-3 kinase (PI3K)/Akt pathway and brain-derived neurotrophic factor (BDNF) are involved in neurological functional recovery following cerebral ischemia. Therefore, we hypothesized that mecha...The phosphatidylinositol-3 kinase (PI3K)/Akt pathway and brain-derived neurotrophic factor (BDNF) are involved in neurological functional recovery following cerebral ischemia. Therefore, we hypothesized that mechanisms of neuroprotection by transplantation of neural stem cells (NSCs) on cerebral ischemia contributed to activation of the PI3K/Akt pathway and enhanced BDNF expression. In the present study, Wortmannin (a specific, covalent inhibitor of PI3K) was administered adjacent to ischemic hippocampus by stereotactic transplantation to further confirm the neuroprotective mechanisms of NSC transplantation following cerebral ischemia. Results showed that focal infarct volume was significantly smaller in the NSCs group, but the neurological behavior score in the NSC group was significantly greater than the middle cerebral artery occlusion model group, Wortmannin treatment group, and NSCs + Wortmannin treatment group. Protein expression of BDNF was significantly greater in the NSC group compared with the Wortmannin treatment group and NSCs + Wortmannin treatment group. These results suggest that the neuroprotective role of NSC transplantation in the cerebral ischemia activated the PI3K/Akt pathway and upregulated BDNF expression in lesioned brains.展开更多
Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer ce...Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.展开更多
Although VEGFR-3 deficiency disrupts blood vascular development during early embryogenesis, the underlying mechanism was not clear. To characterize its function in angiogenesis and lymphangiogenesis, we employed two g...Although VEGFR-3 deficiency disrupts blood vascular development during early embryogenesis, the underlying mechanism was not clear. To characterize its function in angiogenesis and lymphangiogenesis, we employed two genetically modified mouse models in this study, targeting the coding region for the ligand-binding domain (Vegfr△LBD) or the tyrosine kinase domain with an inactivation point mutation (Vegfr3^TKmat). We show that lymphatic growth was disrupted in Vegfr3△LBD/△LBD and Vegfr3^TKmut3^TKmat mice, but blood vessels developed normally in both embryo and yolk sac. Interestingly, in Vegfr3△LBD/△LBD but not Vegfr3^TKmut3^TKmat mice, lymph sac was present but there was lack of iym- phangiogenic sprouting. We further demonstrate that both the wild-type and mutant forms of VEGFR-3 could form heterodimers with VEGFR-2, and decreased the level of phospho-VEGFR-2 and the downstream phospho-Erk1/2 in endothelial cells when they were treated with VEGF-A. These findings indicate that signaling mediated via VEGFR-3 activation by its cognate ligands (VEGF-C/-D) is not required for angiogenesis, and that VEGFR-3 may play a role in this process by modulating VEGFR-2-mediated signals.展开更多
AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal...AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal cancer(CRC) cells. METHODS: Quantitative real-time p CR(q RT-p CR) and Western blot were used to detect the expression levels of mi R-21 and p TEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of p TEN m RNA and its downstream proteins AKT and p I3 K in HCT116 cells after downregulating mi R-21 were investigated. RESULTS: Comparing the mi R-21 expression in CRC cells, the expression levels of mi R-21 were highest in HCT116 cells, and the expression levels of mi R-21 were lowest in SW480 cells. In comparing mi R-21 and p TEN expression in CRC cells, we found that the protein expression levels of mi R-21 and p TEN were inversely correlated(p < 0.05); when mi R-21 expression was reduced, m RNA expression levels of p TEN did not significantly change(p > 0.05), but the expression levels of its protein significantly increased(p < 0.05). In comparing the levels of p TEN protein and downstream AKT and p I3 K in HCT116 cells after downregulation of mi R-21 expression, the levels of AKT and p I3 K protein expression significantly decreased(p < 0.05). CONCLUSION: p TEN is one of the direct target genesof mi R-21. Thus, phosphatase gene and its downstream AKT and p I3 K expression levels can be regulated by regulating the expression levels of mi R-21, which in turn regulates the development of CRC.展开更多
In the present study,Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome.The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error cou...In the present study,Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome.The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts,indicating a learning and memory disorder.After treatment with 30,60,90,120,or 200 mg/kg lithium chloride,the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated,in particular,the 200 mg/kg lithium chloride treatment had the most significant effect.Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta,an inactive form of glycogen synthase kinase 3 beta,in the cerebral cortex and hippocampus of the Fmr1 KO mice.These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice,possibly by inhibiting glycogen synthase kinase 3 beta activity.展开更多
In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-asparti...In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.展开更多
A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical sev...A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.展开更多
3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribos...3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies.展开更多
基金Supported by National Natural Science Foundation of China,No.81760516Natural Science Foundation of Guangxi,China,No.2019GXNSFAA185030+1 种基金Self-Financed Scientific Research Projects of Guangxi Zhuang Autonomous Region Health and Family Planning Commission,China,No.Z20181003Guangxi Medical University Youth Science Fund Project,China,No.GXMUYSF202221.
文摘BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.
基金the National Natural Sciences Foundation of China (No. 30770664)a grant from Educational Committee of Anhui Province, China (No. ZD2008008-2).
文摘Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.
基金Supported by National Research Foundation of Korea(NRF)funded by the South Korean Government,No.NRF-2017M3A9C8028794
文摘AIM To validate the effects of receptor interacting protein kinase-3(RIP3) deletion in non-alcoholic fatty liver disease(NAFLD) and to clarify the mechanism of action.METHODS Wild-type(WT) and RIP3 knockout(KO) mice werefed normal chow and high fat(HF) diets for 12 wk. The body weight was assessed once weekly. After 12 wk, the liver and serum samples were extracted. The liver tissue expression levels of RIP3, microsomal triglyceride transfer protein, protein disulfide isomerase, apolipoprotein-B, X-box binding protein-1, sterol regulatory element-binding protein-1c, fatty acid synthase, cluster of differentiation-36, diglyceride acyltransferase, peroxisome proliferator-activated receptor alpha, tumor necrosis factor-alpha(TNF-α), and interleukin-6 were assessed. Oleic acid treated primary hepatocytes from WT and RIP3 KO mice were stained with Nile red. The expression of inflammatory cytokines, including chemokine(C-X-C motif) ligand(CXCL) 1, CXCL2, and TNF-α, in monocytes was evaluated.RESULTS RIP3 KO HF diet fed mice showed a significant gain in body weight, and liver weight, liver to body weight ratio, and liver triglycerides were increased in HF diet fed RIP3 KO mice compared to HF diet fed WT mice. RIP3 KO primary hepatocytes also had increased intracellular fat droplets compared to WT primary hepatocytes after oleic acid treatment. RIP3 overexpression decreased hepatic fat content. Quantitative real-time polymerase chain reaction analysis showed that the expression of very-low-density lipoproteins secretion markers(microsomal triglyceride transfer protein, protein disulfide isomerase, and apolipoprotein-B) was significantly suppressed in RIP3 KO mice. The overall NAFLD Activity Score was the same between WT and RIP3 KO mice; however, RIP3 KO mice had increased fatty change and decreased lobular inflammation compared to WT mice. Inflammatory signals(CXCL1/2, TNF-α, and interleukin-6) increased after lipopolysaccharide and pancaspase inhibitor(necroptotic condition) treatment in monocytes. Neutrophil chemokines(CXCL1, and CXCL2) were decreased, and TNF-α was increased after RIP3 inhibitor treatment in monocytes.CONCLUSION RIP3 deletion exacerbates steatosis, and partially inhibits inflammation in the HF diet induced NAFLD model.
基金supported by the National Natural Science Foundation of China(No.81070557)
文摘The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for 60 min followed by reperfusion for 24 h. Eighteen male C57BL/6 mice were randomly divided into three groups: sham-operated group(sham), IRI+saline group(IRI group), IRI+Fenofibrate(FEN) group. Normal saline or Fenofibrate(3 mg/kg) was intravenously injected 60 min before renal ischemia in IRI group and FEN group, respectively. Blood samples and renal tissues were collected at the end of reperfusion. The renal function, histopathologic changes, and the expression levels of pro-inflammatory cytokines [interleukin-8(IL-8), tumor necrosis factor alpha(TNF-α) and IL-6] in serum and renal tissue homogenate were assessed. Moreover, the effects of Fenofibrate on activating phosphoinositide 3 kinase/protein kinase B(PI3K/Akt) signaling and peroxisome proliferator-activated receptor-α(PPAR-α) were also measured in renal IRI. The results showed that plasma levels of blood urea nitrogen and creatinine, histopathologic scores and the expression levels of TNF-α, IL-8 and IL-6 were significantly lower in FEN group than in IRI group. Moreover, Fenofibrate pretreatment could further induce PI3K/Akt signal pathway and PPAR-α activation following renal IRI. These findings indicated PPAR-α activation by Fenofibrate exerts protective effects on renal IRI in mice by suppressing inflammation via PI3K/Akt activation. Thus, Fenofibrate could be a novel therapeutic alternative in renal IRI.
基金Supported by the National Natural Science Foundation of China,No.81070319the Beijing Natural Science Foundation of China,No.7102013the Beijing Municipal Education Commission Research Program,China,No.KM201610025004
文摘BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.
基金supported in part by grants from the Young Scientists Awards Foundation of Shandong Province of China,No.BS2013YY049the China Postdoctoral Science Foundation,No.2012M511036
文摘Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.
文摘BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhibitor Wortmannin in SAP associated with ALI.METHODS: Ninety rats were randomly divided into three groups: sham operation(SO) group(n=30), SAP group(n=30), and SAP+Wortmannin(SAP+W) group(n=30). SAP model was induced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct of rats. The rate of lung water content, myeloperoxidase(MPO), matrix metalloproteinase 9(MMP-9), protein kinase B(PKB), abdphosphorylation of protein kinase B(P-PKB) activity in the lung tissue were evaluated.RESULTS: In the SAP group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours(P<0.05); the rate of lung water content, MPO and TNF-α activity were also gradually increased, and the degree of lung lesion gradually increased(P<0.05). In the SAP+Wortmannin group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours; it was higher than that in the SO group(P<0.05), but significantly lower than that in the SAP group(P<0.05). The rest indicators in the SAP+Wortmannin group were also significantly decreased as compared with the SAP group(P<0.05).CONCLUSIONS: The expression of phosphatidylinositol-3 kinase/protein kinase B was elevated in severe pancreatitis rats with lung injury. This suggested that PI3 K signal transduction pathway is involved in the control and release of proinfl ammatory cytokines TNF-α, which may play an important role in the pathogenesis of severe acute pancreatitis associated with lung injury. This finding indicated that Wortmannin can block the PI3 K signal transduction pathway, and inhibit the release of infl ammatory factor TNF-α.
基金National Natural Science Foundation of China,No.81704059Scientific Research Project of Hebei Province Traditional Chinese Medicine Administration,No.2017130。
文摘BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.
文摘Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.
文摘The phosphatidylinositol-3 kinase (PI3K)/Akt pathway and brain-derived neurotrophic factor (BDNF) are involved in neurological functional recovery following cerebral ischemia. Therefore, we hypothesized that mechanisms of neuroprotection by transplantation of neural stem cells (NSCs) on cerebral ischemia contributed to activation of the PI3K/Akt pathway and enhanced BDNF expression. In the present study, Wortmannin (a specific, covalent inhibitor of PI3K) was administered adjacent to ischemic hippocampus by stereotactic transplantation to further confirm the neuroprotective mechanisms of NSC transplantation following cerebral ischemia. Results showed that focal infarct volume was significantly smaller in the NSCs group, but the neurological behavior score in the NSC group was significantly greater than the middle cerebral artery occlusion model group, Wortmannin treatment group, and NSCs + Wortmannin treatment group. Protein expression of BDNF was significantly greater in the NSC group compared with the Wortmannin treatment group and NSCs + Wortmannin treatment group. These results suggest that the neuroprotective role of NSC transplantation in the cerebral ischemia activated the PI3K/Akt pathway and upregulated BDNF expression in lesioned brains.
文摘Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.
基金Acknowledgments We thank Dr Lena Claesson-Welsh (Uppsala University), and PIs of Model Animal Research Center (MARC, Nanjing University) for the helpful discussion about the work, and Yanlan Cao, Wenting Shi and all the staff in the MARC Animal facility of Nanjing University for excellent technical assistance. This work wasfinancially supported by grants from the National Natural Science Foundation of China (30771069, 30671038, and 30930028), the Ministry of Science and Technology of China (2006CB943500), and the Ministry of Education of China (NCET: Program for New Century Excellent Talents in University).
文摘Although VEGFR-3 deficiency disrupts blood vascular development during early embryogenesis, the underlying mechanism was not clear. To characterize its function in angiogenesis and lymphangiogenesis, we employed two genetically modified mouse models in this study, targeting the coding region for the ligand-binding domain (Vegfr△LBD) or the tyrosine kinase domain with an inactivation point mutation (Vegfr3^TKmat). We show that lymphatic growth was disrupted in Vegfr3△LBD/△LBD and Vegfr3^TKmut3^TKmat mice, but blood vessels developed normally in both embryo and yolk sac. Interestingly, in Vegfr3△LBD/△LBD but not Vegfr3^TKmut3^TKmat mice, lymph sac was present but there was lack of iym- phangiogenic sprouting. We further demonstrate that both the wild-type and mutant forms of VEGFR-3 could form heterodimers with VEGFR-2, and decreased the level of phospho-VEGFR-2 and the downstream phospho-Erk1/2 in endothelial cells when they were treated with VEGF-A. These findings indicate that signaling mediated via VEGFR-3 activation by its cognate ligands (VEGF-C/-D) is not required for angiogenesis, and that VEGFR-3 may play a role in this process by modulating VEGFR-2-mediated signals.
文摘AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal cancer(CRC) cells. METHODS: Quantitative real-time p CR(q RT-p CR) and Western blot were used to detect the expression levels of mi R-21 and p TEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of p TEN m RNA and its downstream proteins AKT and p I3 K in HCT116 cells after downregulating mi R-21 were investigated. RESULTS: Comparing the mi R-21 expression in CRC cells, the expression levels of mi R-21 were highest in HCT116 cells, and the expression levels of mi R-21 were lowest in SW480 cells. In comparing mi R-21 and p TEN expression in CRC cells, we found that the protein expression levels of mi R-21 and p TEN were inversely correlated(p < 0.05); when mi R-21 expression was reduced, m RNA expression levels of p TEN did not significantly change(p > 0.05), but the expression levels of its protein significantly increased(p < 0.05). In comparing the levels of p TEN protein and downstream AKT and p I3 K in HCT116 cells after downregulation of mi R-21 expression, the levels of AKT and p I3 K protein expression significantly decreased(p < 0.05). CONCLUSION: p TEN is one of the direct target genesof mi R-21. Thus, phosphatase gene and its downstream AKT and p I3 K expression levels can be regulated by regulating the expression levels of mi R-21, which in turn regulates the development of CRC.
基金the National Natural Science Foundation of China,No.30870876the Natural Science Foundation of Guangdong Province,No.815101700100005+2 种基金the Science and Technology Program of Guangdong Province,No.2005B60302004,2008B030301371,2009B030801368the Traditional Chinese Medicineand Combination of Traditional Chinese and Western Medicine Program of Guangzhou,No.2008A52the Medical and Health Scientific Research Program of Guangzhou,No.2009-YB-167
文摘In the present study,Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome.The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts,indicating a learning and memory disorder.After treatment with 30,60,90,120,or 200 mg/kg lithium chloride,the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated,in particular,the 200 mg/kg lithium chloride treatment had the most significant effect.Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta,an inactive form of glycogen synthase kinase 3 beta,in the cerebral cortex and hippocampus of the Fmr1 KO mice.These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice,possibly by inhibiting glycogen synthase kinase 3 beta activity.
基金supported by Liaoning Social Development Key Projects of Scientific and Technological Department of Liaoning Province, No. 2012225019
文摘In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.
基金Supported by Ministero dell’Universitàe della Ricerca Scientifica e Tecnologica(MURST,ex-60%to GM and EL)
文摘A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.
基金Supported by National Research Foundation of Korea grant funded by the Korea Government (MEST),No.2010-0001356Supported by a grant from the National R and D Program for Cancer Control funded by Ministry of Health and Welfare,Republic of Korea,No.0720560
文摘3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies.