We give a local analytic characterization that a minimal surface in the 3-sphere S3 C R4 defined by an irreducible cubic polynomial is one of the Lawson's minimal tori. This provides an alternative proof of the resul...We give a local analytic characterization that a minimal surface in the 3-sphere S3 C R4 defined by an irreducible cubic polynomial is one of the Lawson's minimal tori. This provides an alternative proof of the result by Perdomo (Characterization of order 3 algebraic immersed minimal surfaces of S3, Geom. Dedicata 129 (2007), 23 34).展开更多
The aim of this paper is to verify that the study of generic conformally flat hypersurfaces in 4-dimensional space forms is reduced to a surface theory in the standard 3-sphere.The conformal structure of generic confo...The aim of this paper is to verify that the study of generic conformally flat hypersurfaces in 4-dimensional space forms is reduced to a surface theory in the standard 3-sphere.The conformal structure of generic conformally flat(local-)hypersurfaces is characterized as conformally flat(local-)3-metrics with the Guichard condition.Then,there is a certain class of orthogonal analytic(local-)Riemannian 2-metrics with constant Gauss curvature-1 such that any 2-metric of the class gives rise to a one-parameter family of conformally flat 3-metrics with the Guichard condition.In this paper,we firstly relate 2-metrics of the class to surfaces in the 3-sphere:for a 2-metric of the class,a 5-dimensional set of(non-isometric)analytic surfaces in the 3-sphere is determined such that any surface of the set gives rise to an evolution of surfaces in the 3-sphere issuing from the surface and the evolution is the Gauss map of a generic conformally flat hypersurface in the Euclidean4-space.Secondly,we characterize analytic surfaces in the 3-sphere which give rise to generic conformally flat hypersurfaces.展开更多
This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the perio...This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.展开更多
This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.展开更多
Associated with an immersion φ : S^3→ ■, we can define a canonical bundle endomorphism F : TS^3→ TS^3 by the pull back of the K?hler form of ■. In this article,related to F we study equivariant minimal immersions...Associated with an immersion φ : S^3→ ■, we can define a canonical bundle endomorphism F : TS^3→ TS^3 by the pull back of the K?hler form of ■. In this article,related to F we study equivariant minimal immersions from S^3 into ■ under the additional condition(?_XF)X = 0 for all X ∈ ker(F). As main result, we give a complete classification of such kinds of immersions. Moreover, we also construct a typical example of equivariant non-minimal immersion φ : S^3→ ■ satisfying(?_XF)X = 0 for all X ∈ ker(F), which is neither Lagrangian nor of CR type.展开更多
In this paper, we establish a rigidity theorem for compact constant mean curva- ture surfaces of the Berger sphere in terms of the surfaces' geometric invariants. This extends the previous similar result on compact m...In this paper, we establish a rigidity theorem for compact constant mean curva- ture surfaces of the Berger sphere in terms of the surfaces' geometric invariants. This extends the previous similar result on compact minimal surfaces of the Berger sphere.展开更多
文摘We give a local analytic characterization that a minimal surface in the 3-sphere S3 C R4 defined by an irreducible cubic polynomial is one of the Lawson's minimal tori. This provides an alternative proof of the result by Perdomo (Characterization of order 3 algebraic immersed minimal surfaces of S3, Geom. Dedicata 129 (2007), 23 34).
文摘The aim of this paper is to verify that the study of generic conformally flat hypersurfaces in 4-dimensional space forms is reduced to a surface theory in the standard 3-sphere.The conformal structure of generic conformally flat(local-)hypersurfaces is characterized as conformally flat(local-)3-metrics with the Guichard condition.Then,there is a certain class of orthogonal analytic(local-)Riemannian 2-metrics with constant Gauss curvature-1 such that any 2-metric of the class gives rise to a one-parameter family of conformally flat 3-metrics with the Guichard condition.In this paper,we firstly relate 2-metrics of the class to surfaces in the 3-sphere:for a 2-metric of the class,a 5-dimensional set of(non-isometric)analytic surfaces in the 3-sphere is determined such that any surface of the set gives rise to an evolution of surfaces in the 3-sphere issuing from the surface and the evolution is the Gauss map of a generic conformally flat hypersurface in the Euclidean4-space.Secondly,we characterize analytic surfaces in the 3-sphere which give rise to generic conformally flat hypersurfaces.
文摘This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.
文摘Associated with an immersion φ : S^3→ ■, we can define a canonical bundle endomorphism F : TS^3→ TS^3 by the pull back of the K?hler form of ■. In this article,related to F we study equivariant minimal immersions from S^3 into ■ under the additional condition(?_XF)X = 0 for all X ∈ ker(F). As main result, we give a complete classification of such kinds of immersions. Moreover, we also construct a typical example of equivariant non-minimal immersion φ : S^3→ ■ satisfying(?_XF)X = 0 for all X ∈ ker(F), which is neither Lagrangian nor of CR type.
文摘In this paper, we establish a rigidity theorem for compact constant mean curva- ture surfaces of the Berger sphere in terms of the surfaces' geometric invariants. This extends the previous similar result on compact minimal surfaces of the Berger sphere.