The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore st...The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process.展开更多
This paper presents an optimization methodology for the geometric configuration of a room–and–pillar mining project,considering safety and operational restrictions while maximizing ore recovery.An underground mangan...This paper presents an optimization methodology for the geometric configuration of a room–and–pillar mining project,considering safety and operational restrictions while maximizing ore recovery.An underground manganese mine was chosen as a case study to investigate the capabilities of the presented methodology.A software package(OPTIMINE)was implemented to address the computational demand in an automated manner.Three–dimensional finite difference analyses were performed in FLAC3D and used as implicit functions to consider safety in terms of the factor of safety and room convergence.The obtained results showed that recovery could be increased from 44%to more than 80%in a safe manner.展开更多
基金Projects (50934002, 51074013, 51104100) supported by the National Natural Science Foundation of China
文摘The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process.
文摘This paper presents an optimization methodology for the geometric configuration of a room–and–pillar mining project,considering safety and operational restrictions while maximizing ore recovery.An underground manganese mine was chosen as a case study to investigate the capabilities of the presented methodology.A software package(OPTIMINE)was implemented to address the computational demand in an automated manner.Three–dimensional finite difference analyses were performed in FLAC3D and used as implicit functions to consider safety in terms of the factor of safety and room convergence.The obtained results showed that recovery could be increased from 44%to more than 80%in a safe manner.