Features of structure and propagation of the 30 to SO day atmospheric oscillations are investigated using the ECMWF analysis of 1980-1983. Evidence is provided to confirm the characteristics of the oscillation in the ...Features of structure and propagation of the 30 to SO day atmospheric oscillations are investigated using the ECMWF analysis of 1980-1983. Evidence is provided to confirm the characteristics of the oscillation in the equatorial region. Those in the mid-high latitudes, however, are revealed to be very different from the tropics and pose a strong barotropic structure. Horizontal coherence shows teleconnection patterns which can be identified as EAP and PNA. The wind field of the specified time scale of the oscillation appears as long-lived vortices and vortex pairs. Mid-latitude perturbations propagate clearly westwards, especially during the winter season. In the high latitudes, they propagate westwards in the winter but eastwards in the summer. Meridional propagations are rather different from region to region.展开更多
In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-hi...In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.展开更多
To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for ...To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for the generation and propagation of CISK-Rossby waves, and to understand restraints and effects of different wave structures and thermodynamic forcing on the 30-50 day oscillations in the tropical atmosphere. Some important properties of the oscillation propagation have been explained and, in detail, with respect to its meridional propagation and vertical "baroclinic" structure. The work has come up with some new opinions and viewpoints. New opinions about the propagation and energy dispersion are to be proved by more observations and study.展开更多
In a simple semi-geostropic model on the equatorial β-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heat...In a simple semi-geostropic model on the equatorial β-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heating can excite the CISK-Kelvm wave and CISK-Rossby wave in the tropical atmosphere and they are all the low-frequency modes which drive the activities of 30-60 day oscillation in the tropics. The most favorable conditions to excite the CISK-Kelvin wave and CISK-Rossby wave are indicated: There is convection heating but not very strong in the atmosphere and there is weaker disturbance in the lower troposphere.The influences of vertical shearing of basic flow in the troposphere on the 30-60 day oscillation in the tropics are also discussed.展开更多
Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in ...Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in June in the south of China is discussed.During the flood(drought) events,there exists an anomalous low-frequency anticyclone(cyclone) at the low level of the troposphere over the South China Sea and the northwestern Pacific,accompanied with anomalous low-frequency heat sinks(heat sources),while there exists an anomalous low-frequency cyclone(anticyclone) with anomalous heat sources(sinks) over the area from the south of China to the south of Japan.On average,the phase evolution of the low-frequency in drought events is 7 to 11 days ahead of that in flood events in May to June in the south of China.In flood events,low-frequency heat sources and cyclones are propagated northward from the southern South China Sea,northwestward from the warm pool of the western Pacific and westward from the northwestern Pacific around 140°E,which have very important impact on the abundant rainfall in June in the south of China.However,in drought events,the northward propagations of the low-frequency heat sources and cyclones from the South China Sea and its vicinity are rather late compared with those in flood events,and there is no obvious westward propagation of the heat sources from the northwestern Pacific.The timing of the low-frequency heat source propagation has remarkable impact on the June rainfall in the south of China.展开更多
The 30-60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model t...The 30-60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30-60 day oscillation mode in many aspects, such,as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30-60 oscillation. It is considered that CISK-Rossby mode should not be neglected.展开更多
The characteristics of 30-60 day oscillation (hereafter called LFO ) of the outgoing longwave radiation data (OLR) and its relations to the interannual oscillations of the sea surface temperature (SST) are investigate...The characteristics of 30-60 day oscillation (hereafter called LFO ) of the outgoing longwave radiation data (OLR) and its relations to the interannual oscillations of the sea surface temperature (SST) are investigated by using the daily OLR data for the period from January, 1979 to December, 1987 and the corresponding monthly SST data. It is found that the LFO the band the interannual oscillations of the SST monthly anomaly (SSTA) interact each other and they all relate to the occurrence and development of El Nino events closely. Before El Nino event happens, it contributes to the SST's wanning up and to the SST's quasi-biennial oscillation (called QBO for brevity) and three and half years oscillation (called SO for short) being in warm water phase in the equatorial central and eastern Pacific (ECP and EEP) that the LFO in the equatorial western Pacific (EWP) enhances and propagates eastward; When El Nino event takes place, the LFO, SSTA and SSTA's QBO and SO in the EEP interact and strengthen each other; But the warmer SST and the SSTA's QBO and SO in the warm water phase in the EEP contribute to the LFO's weakening in the equatorial Pacific. Moreover, these contribute to the SST in the EEP becoming cold and the SSTA's QBO and SO in the EWP being in cold water phase and then impel the El Nino event to end.展开更多
Temporal and spatial evolution characteristics of the 30-60 day oscillation (intraseasonal oscillation, ISO) of summer rainfall in China and the effects of East Asian monsoon on the rainfall ISO are analyzed in this p...Temporal and spatial evolution characteristics of the 30-60 day oscillation (intraseasonal oscillation, ISO) of summer rainfall in China and the effects of East Asian monsoon on the rainfall ISO are analyzed in this paper. Results show that the annual and decadal variations of the oscillation exist between 1960 and 2008, and the intensity is weakest in the late 1970s and early 1980s. In the typical strong years of the rainfall ISO obtained from empirical orthogonal functions (EOF mode 1), an anticyclone is in northwestern Pacific and a cyclone is in the east of China. In the typical weak years, the wind ISO is much weaker. The low-frequency zonal wind and water vapor transport from the low latitudes to mid-latitudes in the typical strong years, and the oscillation strength of diabatic heating is much stronger than that in the weak years of the rainfall ISO. The anomaly characteristics of the rainfall ISO show anti-phases between the Yangtze River basin and south of China. As for the typical strong years of the rainfall ISO in the Yangtze River basin (EOF mode 2), the main oscillation center of water vapor is in the east of China (20-30°N, 110-130°E). In the peak (break) phase of the rainfall oscillation, a low-frequency cyclone (anticyclone) is in the Yangtze River basin and an anticyclone (cyclone) is near Taiwan Island. In addition, the peak rainfall corresponds to the heat source in the Yangtze River basin and the heat sink in the Qinghai-Tibet Plateau. As for the typical strong years of the rainfall ISO in the south of China, the main oscillation center of water vapor is south of 20°N. In the peak (break) phase of the rainfall ISO, a low-frequency cyclone (anticyclone) is in the south of China and an anticyclone (cyclone) is in the Philippines. The peak rainfall corresponds to the heat source in the south of China and the South China Sea, and the heat sink in the west of Indochina.展开更多
30-60 day oscillations (also called intraseasonal oscillations )have been indicated in the early 1970s. A series of studies in the 1980s not only investigated the 30-60 day oscillations in the tropical atmosphere and ...30-60 day oscillations (also called intraseasonal oscillations )have been indicated in the early 1970s. A series of studies in the 1980s not only investigated the 30-60 day oscillations in the tropical atmosphere and revealed their structure characteristics and fundamental moving regularity, but also exposed the existence of these oscillations in展开更多
Based on ECMWF daily grid point data in summer (May—August),1981,the distribution features of the source and sink of kinetic energy of atmosphere 30—60 day oscillation,including its horizontal distribution character...Based on ECMWF daily grid point data in summer (May—August),1981,the distribution features of the source and sink of kinetic energy of atmosphere 30—60 day oscillation,including its horizontal distribution characteristics and its vertical structure characteristics,are investigated systematically with diagnostic analysis methods over a latitude belt between 80°N and 60°S.Also,the probable reasons for the existence of the source and sink of low frequency kinetic energy (LFKE) are discussed preliminarily.Results show that the horizontal distribution of the sources and sinks of kinetic energy of atmospheric 30—60 day oscillation is extremely different.The significant sources and sinks of LFKE mainly exist in the oceans and the coastal regions of continents or islands in the mid-high latitudes.It is also found that,in the vertical direction,the sources and sinks of kinetic energy of 30—60 day oscillation display barotropic structure in the mid-high latitudes of both hemispheres,but dispaly baroclinic structure in the equtorial region,and in the horizontal direction, the sources and sinks mainly display zonal wave-like distribution.The source and sink of LFKE are determinded by ageostrophic wind effect,frictional effect,interaction between sub-grid-scale systems,nonlinear interaction,and the flux-divergence of LFKE transported by transient wind. There are some regional reasons for the generation of sources and sinks which are not completely identical in different areas.展开更多
Based on the ECMWF data (1980--1983) and others, a further inquiry on the activities and the structure feature of 30--60 day oscillation in the tropical atmosphere has been completed. The following results are obtaine...Based on the ECMWF data (1980--1983) and others, a further inquiry on the activities and the structure feature of 30--60 day oscillation in the tropical atmosphere has been completed. The following results are obtained: There is stronger perturbation kinetic energy of 30--60 day atmospheric oscillation (AO) in the equatorial eastern Pacific. This means the equatorial eastern Pacific is a stronger activity region of 30--60 day AO in the tropics. Analyses also show that the AO system with the time scale of 30-60 days might consist of various spatial scale disturbances. The zonal propagation of 30-60 day oscillation in the tropical atmosphere is not all eastward, Some differences are found for different spatial scales, and for propagations in upper and lower tropospheres. The meridional propagation of the oscillation is even more different in the various regions and might be related to the low-frequency wave train in the atmosphere. The stronger activities of 30-60day AO in the equatorial middle-western Pacific are related to the El Nino events and the weaker ones are correspondent to the inverse El Nino phenomena.展开更多
Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSO year,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters and their influences upon 30—60 day oscilla...Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSO year,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters and their influences upon 30—60 day oscillations of the subtropical jet stream are studied with the sta- tistical methods as complex empirical orthogonal function(CEOF)and so on.Results show that in the winter of a normal year(1981—1982),30—60 day oscillations in the subtropical zone are mainly in the northern and southern flanks of exit region of jet stream.In the ENSO year(1982— 1983),they are mainly in the vicinity of entrance and exit regions of jet stream.Intraseasonal changes of subtropical jet stream manifested themselves as latitudinal fluctuation or longitudinal progression or regression of about 40 day period.There are marked differences between propagat- ing passages of low frequency modes responsible for changes of subtropical jet stream in the normal year(1981—1982)and in the ENSO year(1982—1983).Changes of oscillation amplitude show obvious phases.In general,the one in late winter is stronger than that in early winter,strongest one occurs in February.展开更多
利用1948-2010年NCEP/NCAR全球大气逐日平均的再分析资料分析了青藏高原夏季风和南海夏季风大气低频振荡的可能关系。结果表明,夏半年高原地区和南海地区季风均存在明显的30~50天的振荡周期,并且两者在这个振荡周期上存在明显的位相关系...利用1948-2010年NCEP/NCAR全球大气逐日平均的再分析资料分析了青藏高原夏季风和南海夏季风大气低频振荡的可能关系。结果表明,夏半年高原地区和南海地区季风均存在明显的30~50天的振荡周期,并且两者在这个振荡周期上存在明显的位相关系,即南海夏季风的低频振荡比青藏高原夏季风提前约3/4个位相,对500 h Pa和850 h Pa低频风场的研究也得出同样的结果。两者存在明显位相关系的原因之一可能是3月下旬开始南海向青藏高原地区的低频输送。展开更多
文摘Features of structure and propagation of the 30 to SO day atmospheric oscillations are investigated using the ECMWF analysis of 1980-1983. Evidence is provided to confirm the characteristics of the oscillation in the equatorial region. Those in the mid-high latitudes, however, are revealed to be very different from the tropics and pose a strong barotropic structure. Horizontal coherence shows teleconnection patterns which can be identified as EAP and PNA. The wind field of the specified time scale of the oscillation appears as long-lived vortices and vortex pairs. Mid-latitude perturbations propagate clearly westwards, especially during the winter season. In the high latitudes, they propagate westwards in the winter but eastwards in the summer. Meridional propagations are rather different from region to region.
基金This study was supported in part by National Natural Science Foundation of China
文摘In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.
基金Natural Science Foundation of China (49975012) Key Teacher Foundation of Education Ministry
文摘To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for the generation and propagation of CISK-Rossby waves, and to understand restraints and effects of different wave structures and thermodynamic forcing on the 30-50 day oscillations in the tropical atmosphere. Some important properties of the oscillation propagation have been explained and, in detail, with respect to its meridional propagation and vertical "baroclinic" structure. The work has come up with some new opinions and viewpoints. New opinions about the propagation and energy dispersion are to be proved by more observations and study.
文摘In a simple semi-geostropic model on the equatorial β-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heating can excite the CISK-Kelvm wave and CISK-Rossby wave in the tropical atmosphere and they are all the low-frequency modes which drive the activities of 30-60 day oscillation in the tropics. The most favorable conditions to excite the CISK-Kelvin wave and CISK-Rossby wave are indicated: There is convection heating but not very strong in the atmosphere and there is weaker disturbance in the lower troposphere.The influences of vertical shearing of basic flow in the troposphere on the 30-60 day oscillation in the tropics are also discussed.
基金National Key Program for Developing Basic Research (2009CB421404)Key Program of National Science Foundation of China (40730951)Program of National Science Foundation of China(40605028)
文摘Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in June in the south of China is discussed.During the flood(drought) events,there exists an anomalous low-frequency anticyclone(cyclone) at the low level of the troposphere over the South China Sea and the northwestern Pacific,accompanied with anomalous low-frequency heat sinks(heat sources),while there exists an anomalous low-frequency cyclone(anticyclone) with anomalous heat sources(sinks) over the area from the south of China to the south of Japan.On average,the phase evolution of the low-frequency in drought events is 7 to 11 days ahead of that in flood events in May to June in the south of China.In flood events,low-frequency heat sources and cyclones are propagated northward from the southern South China Sea,northwestward from the warm pool of the western Pacific and westward from the northwestern Pacific around 140°E,which have very important impact on the abundant rainfall in June in the south of China.However,in drought events,the northward propagations of the low-frequency heat sources and cyclones from the South China Sea and its vicinity are rather late compared with those in flood events,and there is no obvious westward propagation of the heat sources from the northwestern Pacific.The timing of the low-frequency heat source propagation has remarkable impact on the June rainfall in the south of China.
文摘The 30-60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30-60 day oscillation mode in many aspects, such,as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30-60 oscillation. It is considered that CISK-Rossby mode should not be neglected.
基金This work is supported by the National Natural Science foundation of China under Program49070240.
文摘The characteristics of 30-60 day oscillation (hereafter called LFO ) of the outgoing longwave radiation data (OLR) and its relations to the interannual oscillations of the sea surface temperature (SST) are investigated by using the daily OLR data for the period from January, 1979 to December, 1987 and the corresponding monthly SST data. It is found that the LFO the band the interannual oscillations of the SST monthly anomaly (SSTA) interact each other and they all relate to the occurrence and development of El Nino events closely. Before El Nino event happens, it contributes to the SST's wanning up and to the SST's quasi-biennial oscillation (called QBO for brevity) and three and half years oscillation (called SO for short) being in warm water phase in the equatorial central and eastern Pacific (ECP and EEP) that the LFO in the equatorial western Pacific (EWP) enhances and propagates eastward; When El Nino event takes place, the LFO, SSTA and SSTA's QBO and SO in the EEP interact and strengthen each other; But the warmer SST and the SSTA's QBO and SO in the warm water phase in the EEP contribute to the LFO's weakening in the equatorial Pacific. Moreover, these contribute to the SST in the EEP becoming cold and the SSTA's QBO and SO in the EWP being in cold water phase and then impel the El Nino event to end.
基金Natural Science Foundation for Young Scientists (40805047,41105058,40805039)supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Temporal and spatial evolution characteristics of the 30-60 day oscillation (intraseasonal oscillation, ISO) of summer rainfall in China and the effects of East Asian monsoon on the rainfall ISO are analyzed in this paper. Results show that the annual and decadal variations of the oscillation exist between 1960 and 2008, and the intensity is weakest in the late 1970s and early 1980s. In the typical strong years of the rainfall ISO obtained from empirical orthogonal functions (EOF mode 1), an anticyclone is in northwestern Pacific and a cyclone is in the east of China. In the typical weak years, the wind ISO is much weaker. The low-frequency zonal wind and water vapor transport from the low latitudes to mid-latitudes in the typical strong years, and the oscillation strength of diabatic heating is much stronger than that in the weak years of the rainfall ISO. The anomaly characteristics of the rainfall ISO show anti-phases between the Yangtze River basin and south of China. As for the typical strong years of the rainfall ISO in the Yangtze River basin (EOF mode 2), the main oscillation center of water vapor is in the east of China (20-30°N, 110-130°E). In the peak (break) phase of the rainfall oscillation, a low-frequency cyclone (anticyclone) is in the Yangtze River basin and an anticyclone (cyclone) is near Taiwan Island. In addition, the peak rainfall corresponds to the heat source in the Yangtze River basin and the heat sink in the Qinghai-Tibet Plateau. As for the typical strong years of the rainfall ISO in the south of China, the main oscillation center of water vapor is south of 20°N. In the peak (break) phase of the rainfall ISO, a low-frequency cyclone (anticyclone) is in the south of China and an anticyclone (cyclone) is in the Philippines. The peak rainfall corresponds to the heat source in the south of China and the South China Sea, and the heat sink in the west of Indochina.
文摘30-60 day oscillations (also called intraseasonal oscillations )have been indicated in the early 1970s. A series of studies in the 1980s not only investigated the 30-60 day oscillations in the tropical atmosphere and revealed their structure characteristics and fundamental moving regularity, but also exposed the existence of these oscillations in
基金This work is supported by the National Natural Science Foundation of China.
文摘Based on ECMWF daily grid point data in summer (May—August),1981,the distribution features of the source and sink of kinetic energy of atmosphere 30—60 day oscillation,including its horizontal distribution characteristics and its vertical structure characteristics,are investigated systematically with diagnostic analysis methods over a latitude belt between 80°N and 60°S.Also,the probable reasons for the existence of the source and sink of low frequency kinetic energy (LFKE) are discussed preliminarily.Results show that the horizontal distribution of the sources and sinks of kinetic energy of atmospheric 30—60 day oscillation is extremely different.The significant sources and sinks of LFKE mainly exist in the oceans and the coastal regions of continents or islands in the mid-high latitudes.It is also found that,in the vertical direction,the sources and sinks of kinetic energy of 30—60 day oscillation display barotropic structure in the mid-high latitudes of both hemispheres,but dispaly baroclinic structure in the equtorial region,and in the horizontal direction, the sources and sinks mainly display zonal wave-like distribution.The source and sink of LFKE are determinded by ageostrophic wind effect,frictional effect,interaction between sub-grid-scale systems,nonlinear interaction,and the flux-divergence of LFKE transported by transient wind. There are some regional reasons for the generation of sources and sinks which are not completely identical in different areas.
文摘Based on the ECMWF data (1980--1983) and others, a further inquiry on the activities and the structure feature of 30--60 day oscillation in the tropical atmosphere has been completed. The following results are obtained: There is stronger perturbation kinetic energy of 30--60 day atmospheric oscillation (AO) in the equatorial eastern Pacific. This means the equatorial eastern Pacific is a stronger activity region of 30--60 day AO in the tropics. Analyses also show that the AO system with the time scale of 30-60 days might consist of various spatial scale disturbances. The zonal propagation of 30-60 day oscillation in the tropical atmosphere is not all eastward, Some differences are found for different spatial scales, and for propagations in upper and lower tropospheres. The meridional propagation of the oscillation is even more different in the various regions and might be related to the low-frequency wave train in the atmosphere. The stronger activities of 30-60day AO in the equatorial middle-western Pacific are related to the El Nino events and the weaker ones are correspondent to the inverse El Nino phenomena.
基金This work was supported by the National Natural Science Foundation of China.
文摘Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSO year,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters and their influences upon 30—60 day oscillations of the subtropical jet stream are studied with the sta- tistical methods as complex empirical orthogonal function(CEOF)and so on.Results show that in the winter of a normal year(1981—1982),30—60 day oscillations in the subtropical zone are mainly in the northern and southern flanks of exit region of jet stream.In the ENSO year(1982— 1983),they are mainly in the vicinity of entrance and exit regions of jet stream.Intraseasonal changes of subtropical jet stream manifested themselves as latitudinal fluctuation or longitudinal progression or regression of about 40 day period.There are marked differences between propagat- ing passages of low frequency modes responsible for changes of subtropical jet stream in the normal year(1981—1982)and in the ENSO year(1982—1983).Changes of oscillation amplitude show obvious phases.In general,the one in late winter is stronger than that in early winter,strongest one occurs in February.
文摘利用1948-2010年NCEP/NCAR全球大气逐日平均的再分析资料分析了青藏高原夏季风和南海夏季风大气低频振荡的可能关系。结果表明,夏半年高原地区和南海地区季风均存在明显的30~50天的振荡周期,并且两者在这个振荡周期上存在明显的位相关系,即南海夏季风的低频振荡比青藏高原夏季风提前约3/4个位相,对500 h Pa和850 h Pa低频风场的研究也得出同样的结果。两者存在明显位相关系的原因之一可能是3月下旬开始南海向青藏高原地区的低频输送。