In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-hi...In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.展开更多
On the day of December 1st,world-famous lingerie enterprise Embryform Group made big celebrations for its 35-year anniversary starting with a grand lingerie show under the theme of"Miracle of the Body",film ...On the day of December 1st,world-famous lingerie enterprise Embryform Group made big celebrations for its 35-year anniversary starting with a grand lingerie show under the theme of"Miracle of the Body",film star Li Bingbing,famous anchor Shenxing,together with展开更多
We investigate global temperature data produced by the Climate Research Unit at the University of East Anglia (CRU) and the Berkeley Earth Surface Temperature consortium (BEST). We first fit the 1850-2010 data with po...We investigate global temperature data produced by the Climate Research Unit at the University of East Anglia (CRU) and the Berkeley Earth Surface Temperature consortium (BEST). We first fit the 1850-2010 data with polynomials of degrees 1 to 9. A significant ~60-yr oscillation is accounted for as soon as degree 4 is reached. This oscillation is even better modeled as a broken line, more precisely a series of ~30-yr long linear segments, with slope breaks (singularities) in ~1904, ~1940, and ~1974 (±3 yr), and a possible recent occurrence at the turn of the 20th century. Oceanic indices PDO (Pacific Decadal Oscillation) and AMO (Atlantic Multidecadal Oscillation) have undergone major changes (respectively of sign and slope) roughly at the same times as the temperature slope breaks. This can be interpreted with a system of oceanic non-linear coupled oscillators with abrupt mode shifts. Thus, the Earth’s climate may have entered a new mode (a new ~30-yr episode) near the turn of the 20th century: no further temperature increase, a dominantly negative PDO index and a decreasing AMO index might be expected for the next decade or two.展开更多
Rainfall erosivity,one of the factors in the Universal Soil Loss Equation.quantifies the effect of rainfall and runoffon soil erosion.High-resolution data are required to compute rainfall erosivity,but are not widely ...Rainfall erosivity,one of the factors in the Universal Soil Loss Equation.quantifies the effect of rainfall and runoffon soil erosion.High-resolution data are required to compute rainfall erosivity,but are not widely available in many parts of the world.As the temporal resolution of rainfall measurement decreases,computed rainfall erosivity decreases.The objective of the paper is to derive a series of conversion factors as a function of the time interval to compute rainfall erosivity so that the R factor computed using data at different time intervals could be converted to that computed using 1-min data.Rainfall data at 1-min intervals from 62 stations over China were collected to first compute the~ue'R factor values.Underestimation of the R factor was systematically evaluated using data aggregated at 5,6.10,15,20,30,and 60-min to develop conversion factors for the R factor and the 1-in-10-year storm EI30 values.Compared with true values,the relative error in R factor using data at fixed intervals of≤10min was<10%for at least 44 out of 62 stations.Errors increased rapidly when the time interval of the rainfall data exceeded 15 min.Relative errors were>10%using 15-min data for 66.1%of stations and>20%using 30-min data for 61.3%of stations.The conversion factors for the R factor,ranging from 1.051 to 1.871 for 5 to 60-min data,are higher than those for the 1-in-10-years storm EI30,ranging from 1.034 to 1.489 for the 62stations.展开更多
During adaptive radiation,mitochondria have co-evolved with their hosts,leading to gain or loss of subunits and assembly factors of respiratory complexes.Plant mitochondrial complex Ⅰ harbors40 nuclearand 9 mitochond...During adaptive radiation,mitochondria have co-evolved with their hosts,leading to gain or loss of subunits and assembly factors of respiratory complexes.Plant mitochondrial complex Ⅰ harbors40 nuclearand 9 mitochondrial-encoded subunits,and is formed by stepwise assembly during which different intermediates are integrated via various assembly factors.In mammals,the mitochondrial complex Ⅰ intermediate assembly(MCIA)complex is required for building the membrane arm module.However,plants have lost almost all of the MCIA complex components,giving rise to the hypothesis that plants follow an ancestral pathway to assemble the membrane arm subunits.Here,we characterize a maize crumpled seed mutant,crk1,and reveal by map-based cloning that CRK1 encodes an ortholog of human complex Ⅰ assembly factor 1,zNDUFAF1,the only evolutionarily conserved MCIA subunit in plants.zNDUFAF1 is localized in the mitochondria and accumulates in two intermediate complexes that contain complex Ⅰ membrane arm subunits.Disruption of zNDUFAF1 results in severe defects in complex Ⅰ assembly and activity,a cellular bioenergetic shift to aerobic glycolysis,and mitochondrial vacuolation.Moreover,we found that zNDUFAF1,the putative mitochondrial import inner membrane translocase ZmTIM17-1,and the isovaleryl-coenzyme A dehydrogenase ZmIVD1 interact each other,and could be co-precipitated from the mitochondria and co-migrate in the same assembly intermediates.Knockout of either ZmTIM17-1 or ZmIVD1 could lead to the significantly reduced complex Ⅰ stability and activity as well as defective seeds.These results suggest that zNDUFAF1,ZmTIM17-1 and ZmIVD1 probably form an MCIA-like complex that is essential for the biogenesis of mitochondrial complex Ⅰ and seed development in maize.Our findings also imply that plants and mammals recruit MCIA subunits independently for mitochondrial complex Ⅰ assembly,highlighting the importance of parallel evolution in mitochondria adaptation to their hosts.展开更多
基金This study was supported in part by National Natural Science Foundation of China
文摘In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.
文摘On the day of December 1st,world-famous lingerie enterprise Embryform Group made big celebrations for its 35-year anniversary starting with a grand lingerie show under the theme of"Miracle of the Body",film star Li Bingbing,famous anchor Shenxing,together with
基金financial support from IPGP as part of the IEPT RAS-IPGP cooperation.IPGP Contribution NS 3391.
文摘We investigate global temperature data produced by the Climate Research Unit at the University of East Anglia (CRU) and the Berkeley Earth Surface Temperature consortium (BEST). We first fit the 1850-2010 data with polynomials of degrees 1 to 9. A significant ~60-yr oscillation is accounted for as soon as degree 4 is reached. This oscillation is even better modeled as a broken line, more precisely a series of ~30-yr long linear segments, with slope breaks (singularities) in ~1904, ~1940, and ~1974 (±3 yr), and a possible recent occurrence at the turn of the 20th century. Oceanic indices PDO (Pacific Decadal Oscillation) and AMO (Atlantic Multidecadal Oscillation) have undergone major changes (respectively of sign and slope) roughly at the same times as the temperature slope breaks. This can be interpreted with a system of oceanic non-linear coupled oscillators with abrupt mode shifts. Thus, the Earth’s climate may have entered a new mode (a new ~30-yr episode) near the turn of the 20th century: no further temperature increase, a dominantly negative PDO index and a decreasing AMO index might be expected for the next decade or two.
基金the Second Tibetan Plateau Scien tifc Expedition and Research Program(STEP)(No.2019QZKK0306)the National Key R&D Program(No.2018YFC0507006)Na tional Natural Science Foundation of China(No.41877068).
文摘Rainfall erosivity,one of the factors in the Universal Soil Loss Equation.quantifies the effect of rainfall and runoffon soil erosion.High-resolution data are required to compute rainfall erosivity,but are not widely available in many parts of the world.As the temporal resolution of rainfall measurement decreases,computed rainfall erosivity decreases.The objective of the paper is to derive a series of conversion factors as a function of the time interval to compute rainfall erosivity so that the R factor computed using data at different time intervals could be converted to that computed using 1-min data.Rainfall data at 1-min intervals from 62 stations over China were collected to first compute the~ue'R factor values.Underestimation of the R factor was systematically evaluated using data aggregated at 5,6.10,15,20,30,and 60-min to develop conversion factors for the R factor and the 1-in-10-year storm EI30 values.Compared with true values,the relative error in R factor using data at fixed intervals of≤10min was<10%for at least 44 out of 62 stations.Errors increased rapidly when the time interval of the rainfall data exceeded 15 min.Relative errors were>10%using 15-min data for 66.1%of stations and>20%using 30-min data for 61.3%of stations.The conversion factors for the R factor,ranging from 1.051 to 1.871 for 5 to 60-min data,are higher than those for the 1-in-10-years storm EI30,ranging from 1.034 to 1.489 for the 62stations.
基金supported by a grant from the Ministry of Science and Technology of the People’s Republic of China 2021YFF1000303(to Guifeng Wang)grants from the National Natural Science Foundation of China(U1804235 to Guifeng Wang,32001562 to Q.S.).
文摘During adaptive radiation,mitochondria have co-evolved with their hosts,leading to gain or loss of subunits and assembly factors of respiratory complexes.Plant mitochondrial complex Ⅰ harbors40 nuclearand 9 mitochondrial-encoded subunits,and is formed by stepwise assembly during which different intermediates are integrated via various assembly factors.In mammals,the mitochondrial complex Ⅰ intermediate assembly(MCIA)complex is required for building the membrane arm module.However,plants have lost almost all of the MCIA complex components,giving rise to the hypothesis that plants follow an ancestral pathway to assemble the membrane arm subunits.Here,we characterize a maize crumpled seed mutant,crk1,and reveal by map-based cloning that CRK1 encodes an ortholog of human complex Ⅰ assembly factor 1,zNDUFAF1,the only evolutionarily conserved MCIA subunit in plants.zNDUFAF1 is localized in the mitochondria and accumulates in two intermediate complexes that contain complex Ⅰ membrane arm subunits.Disruption of zNDUFAF1 results in severe defects in complex Ⅰ assembly and activity,a cellular bioenergetic shift to aerobic glycolysis,and mitochondrial vacuolation.Moreover,we found that zNDUFAF1,the putative mitochondrial import inner membrane translocase ZmTIM17-1,and the isovaleryl-coenzyme A dehydrogenase ZmIVD1 interact each other,and could be co-precipitated from the mitochondria and co-migrate in the same assembly intermediates.Knockout of either ZmTIM17-1 or ZmIVD1 could lead to the significantly reduced complex Ⅰ stability and activity as well as defective seeds.These results suggest that zNDUFAF1,ZmTIM17-1 and ZmIVD1 probably form an MCIA-like complex that is essential for the biogenesis of mitochondrial complex Ⅰ and seed development in maize.Our findings also imply that plants and mammals recruit MCIA subunits independently for mitochondrial complex Ⅰ assembly,highlighting the importance of parallel evolution in mitochondria adaptation to their hosts.