基于密歇根大学射电天文台数据库(University of Michigan Radio Observatory Datebase—UMRAO),分析了3C345在射电波段的偏振性质.利用功率谱方法得到其在4.8、8和14.5 GHz处的长期偏振变化的周期分别为:11.1±1.7、11.8±1.5...基于密歇根大学射电天文台数据库(University of Michigan Radio Observatory Datebase—UMRAO),分析了3C345在射电波段的偏振性质.利用功率谱方法得到其在4.8、8和14.5 GHz处的长期偏振变化的周期分别为:11.1±1.7、11.8±1.5和10.9±1.6 yr.展开更多
The search for periodic behavior in Blazars has been an important subject, which is helpful for providing significant clues to the structure and physical processes of their central energy engine. A binary black hole s...The search for periodic behavior in Blazars has been an important subject, which is helpful for providing significant clues to the structure and physical processes of their central energy engine. A binary black hole system has recently been suggested for causing precession of relativistic jets and rotation of the ejection position angle of VLBI knots in superluminal sources. It has been suggested that in QSO 3C345, the ejection direction of the superluminal knots rotates due to the precession of the central engine and thus the ejection position angle of the successive knots shows a periodic behavior. Some authors argue for a period of precession being ~5.6 yr (Abraham & Caproni), ~8-10 yr (Klare et al.) and ~9.5 yr (Lobanov & Roland). Applying the helical model proposed by Qian et al. and selecting appropriate parameters to fit the initial trajectories (within 0.3 mas) of all the components (C4 to C10), we derive the relation between the ejection position angle of the components and their precession phase, and thus find a 6.9-year precession period (4.3 yr in the source frame), which can fit the ejection position angle of all these superluminal knots well. Since the VLBI observations have covered more than two precession periods, confirmation in one or more future periods would be important. In addition, we emphasize that the initial parts of the trajectories of these knots can be fitted by a common helical pattern (channel) through a precessing of its initial phase. This scenario (or helical precessing model) is different from the usual ballistic precessing model in which the individual superluminal knots move along straight-lines after ejection (Tateyama & Kingham).展开更多
Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion ...Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk. The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.展开更多
Based on the light curves at 22 and 37 GHz from the Metsahovi monitoring program, we investigate the time lags between the two radio bands for 48 radio-loud AGNs. DCF and ZDCF analyses are applied to the data. Our res...Based on the light curves at 22 and 37 GHz from the Metsahovi monitoring program, we investigate the time lags between the two radio bands for 48 radio-loud AGNs. DCF and ZDCF analyses are applied to the data. Our results show that there is a strong correlation between the two radio frequencies for all the sources, with the variations in the light curves at 37 GHz leading the ones at 22 GHz in general. There is no obvious differences between different sub-class AGNs as regards the time lag. In two sources, it was found that the bursts at the lower frequency lead the ones at the higher frequency. One possible explanation is that electron acceleration dominates the light curve until the radiation reaches the maximum. Some sources, such as 3C 273, 3C 279, 3C 345 and 3C 454.3, have good enough data, so we can calculate their lags burst-by-burst. Our calculations show that different outbursts have dif- ferent lags. Some bursts have positive lags, most of bursts have no clear lags, and a few have negative lags. This result means that different bursts are triggered by different mechanisms, and the interpretation for the result involves both an intrinsic and a geometric mechanism. The positive lags are well consistent with the shock model, and we use these lags to calculate the typical magnetic field strength of the radiating region.展开更多
文摘基于密歇根大学射电天文台数据库(University of Michigan Radio Observatory Datebase—UMRAO),分析了3C345在射电波段的偏振性质.利用功率谱方法得到其在4.8、8和14.5 GHz处的长期偏振变化的周期分别为:11.1±1.7、11.8±1.5和10.9±1.6 yr.
文摘The search for periodic behavior in Blazars has been an important subject, which is helpful for providing significant clues to the structure and physical processes of their central energy engine. A binary black hole system has recently been suggested for causing precession of relativistic jets and rotation of the ejection position angle of VLBI knots in superluminal sources. It has been suggested that in QSO 3C345, the ejection direction of the superluminal knots rotates due to the precession of the central engine and thus the ejection position angle of the successive knots shows a periodic behavior. Some authors argue for a period of precession being ~5.6 yr (Abraham & Caproni), ~8-10 yr (Klare et al.) and ~9.5 yr (Lobanov & Roland). Applying the helical model proposed by Qian et al. and selecting appropriate parameters to fit the initial trajectories (within 0.3 mas) of all the components (C4 to C10), we derive the relation between the ejection position angle of the components and their precession phase, and thus find a 6.9-year precession period (4.3 yr in the source frame), which can fit the ejection position angle of all these superluminal knots well. Since the VLBI observations have covered more than two precession periods, confirmation in one or more future periods would be important. In addition, we emphasize that the initial parts of the trajectories of these knots can be fitted by a common helical pattern (channel) through a precessing of its initial phase. This scenario (or helical precessing model) is different from the usual ballistic precessing model in which the individual superluminal knots move along straight-lines after ejection (Tateyama & Kingham).
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10373006 and 10121503
文摘Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk. The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.
基金the National Natural Science Foundation of China
文摘Based on the light curves at 22 and 37 GHz from the Metsahovi monitoring program, we investigate the time lags between the two radio bands for 48 radio-loud AGNs. DCF and ZDCF analyses are applied to the data. Our results show that there is a strong correlation between the two radio frequencies for all the sources, with the variations in the light curves at 37 GHz leading the ones at 22 GHz in general. There is no obvious differences between different sub-class AGNs as regards the time lag. In two sources, it was found that the bursts at the lower frequency lead the ones at the higher frequency. One possible explanation is that electron acceleration dominates the light curve until the radiation reaches the maximum. Some sources, such as 3C 273, 3C 279, 3C 345 and 3C 454.3, have good enough data, so we can calculate their lags burst-by-burst. Our calculations show that different outbursts have dif- ferent lags. Some bursts have positive lags, most of bursts have no clear lags, and a few have negative lags. This result means that different bursts are triggered by different mechanisms, and the interpretation for the result involves both an intrinsic and a geometric mechanism. The positive lags are well consistent with the shock model, and we use these lags to calculate the typical magnetic field strength of the radiating region.