Objective: To investigate the value of 3D printing techniques in the treatment of complex tibial plateau fractures. Methods: From September 2016 to September 2018, 28 patients with complex tibial plateau fractures wer...Objective: To investigate the value of 3D printing techniques in the treatment of complex tibial plateau fractures. Methods: From September 2016 to September 2018, 28 patients with complex tibial plateau fractures were treated in our hospital. According to the odevity of hospitalized order, the patients were divided into two groups. Group A used 3D reconstruction, virtually reduction, 3D printing and demonstration of individual fracture model before operation while group B only received conventional process by use X-rays or CT image. Comparison between the two groups was made in operation time, operative blood loss, radiation frequency, surgery instrument cost and knee function score. Results: The follow-up was 14.4 months on average (ranged 6 to 22 months). There was no statistical difference of the surgery instrument cost between the 2 groups (P > 0.05). The operation time of group A was significantly shorter than that of group B (P χ2 = 0.373, P = 0.54). Conclusion: 3D printing techniques can improve surgery effect in complex tibial plateau fractures.展开更多
Due to the attractive performances such as the ability of beam focus,broadband,multi-beam scanning and other features,Luneburg lens antennas are applied in multi-beam antenna,which overcomes the problem of gain loss p...Due to the attractive performances such as the ability of beam focus,broadband,multi-beam scanning and other features,Luneburg lens antennas are applied in multi-beam antenna,which overcomes the problem of gain loss produced by multi-beam parabolic antenna.Based on 3-D printing technique,Luneburg lens antennas by drilling holes are studied.Permittivity and loss tangent of the equivalent lens materials can be influenced by original materials,hole shapes,hole directions,and porosity.After tests,polystyrene with waxes may be the most appropriate materials for Luneburg lens with high strength.Permittivity with the shape of triangle is the lowest due to the homogeneity.Relative permittivities with the direction at a range of 15°-45°are lower while loss tangent at a range of 0°-30°.Radial directional holes are more appropriate for Luneburg lens.The relative permittivity is decreased with the increment of porosity.After calculations,the forecasts calculated by Looyenga and A-BG theory are more precise.Finally,Luneburg lens with two layers is fabricated by 3-D printing.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tur...Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.展开更多
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor...In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.展开更多
Three-dimensional(3D)printing technology,as a novel technical method,can convert conventional computed tomography(CT)or magnetic resonance imaging(MRI)scans to computer-aided design files and develop a 2D spatial stru...Three-dimensional(3D)printing technology,as a novel technical method,can convert conventional computed tomography(CT)or magnetic resonance imaging(MRI)scans to computer-aided design files and develop a 2D spatial structure into a 3D imaging structure.In recent years,the technology has been widely used in numerous areas,including head and neck surgery,orthopedics,and bio-medicinal research.This article uses examples of 3D printed tumor models to develop Response Evaluation Criteria In Solid Tumors(RECIST)standards to evaluate the changes in tumors.RECIST standard is currently recognized as the standard for assessment of chemotherapy.Under the RECIST standard,changes occurring in tumors before and after the surgery,are evaluated.The assessment depends upon a CT evaluation of the changes in the lesions with the largest diameters.In addition,the disease progression and stability of remission is also assessed.Three-dimensional printing technology is more intuitive in the evaluation of changes to human tumors following chemotherapy and targeted therapy.However,a few reports are available.展开更多
Enterocutaneous fistulas(ECFs) are great challenges during the open abdomen. The loss of digestive juice, water-electrolyte imbalance and malnutrition are intractable issues during management of ECF. Techniques such a...Enterocutaneous fistulas(ECFs) are great challenges during the open abdomen. The loss of digestive juice, water-electrolyte imbalance and malnutrition are intractable issues during management of ECF. Techniques such as "fistula patch" and vacuumassisted closure therapy have been applied to prevent contamination of open abdominal wounds by intestinal fistula drainage. However, failures are encountered due to high-output fistula and anatomical complexity. Here, we report 3 D-printed patient-personalized fistula stent for ECF treatment based on 3 D reconstruction of the fistula image. Subsequent follow-up demonstrated that this stent was well-implanted and effective to reduce the volume of enteric fistula effluent.展开更多
BACKGROUND Open abdomen(OA) has been generally accepted for its magnificent superiority and effectiveness in patients with severe trauma, severe intra-abdominal infection, and abdominal compartment syndrome. In the me...BACKGROUND Open abdomen(OA) has been generally accepted for its magnificent superiority and effectiveness in patients with severe trauma, severe intra-abdominal infection, and abdominal compartment syndrome. In the meantime, OA calls for a mass of nursing and the subsequent enteroatomospheric fistula(EAF), which is one of the most common complications of OA therapy, remains a thorny challenge.CASE SUMMARY Our team applied thermoplastic polyurethane as a befitting material for producing a 3 D-printed "fistula stent" in the management of an EAF patient,who was initially admitted to local hospital because of abdominal pain and distension and diagnosed with bowel obstruction. After a series of operations and OA therapy, the patient developed an EAF.CONCLUSION Application of this novel "fistula stent" resulted in a drastic reduction in the amount of lost enteric effluent and greatly accelerated rehabilitation processes.展开更多
Neurosurgeons who perform intracere-bral hemorrhage(ICH)evacuation procedures have lim-ited options for monitoring hematoma evacuation and intraoperatively assessing residual-hematoma burden.In recent years,neuroendos...Neurosurgeons who perform intracere-bral hemorrhage(ICH)evacuation procedures have lim-ited options for monitoring hematoma evacuation and intraoperatively assessing residual-hematoma burden.In recent years,neuroendoscope-assisted,minimally inva-sive surgery for spontaneous ICH is simple and effective and becoming increasingly common.Many methods are applied in neuronavigation-assisted surgery for ICH evac-uation,such as neuroendoscopy,three-dimensional(3D)reconstruction,intraoperative ultrasound,and stereotac-tic craniotomy.Compared with a traditional craniotomy operation,hematoma removal(using methods of accurate localization)can reduce iatrogenic damage,protect white matter,and shorten patients’recovery time.This paper mainly outlines the treatment of basal ganglia-cerebral hemorrhage with neuroendoscopy assistance using local-ization techniques.展开更多
The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelastic...The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.展开更多
Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious m...Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D p...Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.展开更多
Barium titanate(BaTiO_(3))piezoelectric ceramics with triply periodic minimal surface(TPMS)structures have been frequently used in filters,engines,artificial bones,and other fields due to their high specific surface a...Barium titanate(BaTiO_(3))piezoelectric ceramics with triply periodic minimal surface(TPMS)structures have been frequently used in filters,engines,artificial bones,and other fields due to their high specific surface area,high thermal stability,and good heat dissipation.However,only a limited number of studies have analyzed the effect of various parameters,such as different wall thicknesses and porosities of TPMS structures,on ceramic electromechanical performance.In this study,we first employed vat photopolymerization(VPP)three-dimensional(3D)printing technology to fabricate high-performance BaTiO_(3) ceramics.We investigated the slurry composition design and forming process and designed a stepwise sintering postprocessing technique to achieve a density of 96.3%and a compressive strength of 250±25 MPa,with the piezoelectric coefficient(d_(33))reaching 263 pC/N.Subsequently,we explored the influence of three TPMS structures,namely,diamond,gyroid,and Schwarz P,on the piezoelectric and mechanical properties of BaTiO_(3) ceramics,with the gyroid structure identified as exhibiting optimal performance.Finally,we examined the piezoelectric and mechanical properties of BaTiO_(3) ceramics with the gyroid structure of varying wall thicknesses and porosities,thus enabling the modulation of ceramic electromechanical performance.展开更多
Direct photopatterning is a powerful strategy for patterning colloidal quantum dots(QDs)for their integration in various electronic and optoelectronic devices.However,ultraviolet(UV)exposure required for QD patterning...Direct photopatterning is a powerful strategy for patterning colloidal quantum dots(QDs)for their integration in various electronic and optoelectronic devices.However,ultraviolet(UV)exposure required for QD patterning,especially those with short wavelength(e.g.,deep UV light),can degrade the photo-,and electroluminescence,and other properties of patterned QDs.Here we develop a photosensitizer-assisted approach for direct photopatterning of QDs with h-line(centered at 405 nm)UV light and better preservation of their luminescent properties.This approach uses a photosensitizer that can absorb the h-line UV light and transfer the energy to activate bisazide-based crosslinkers via Dexter energy transfer.Uniform,high-resolution(smallest feature size,2μm),and full-color patterns of red,green,and blue QD layers can be achieved.The patterned QD layers maintain up to~90%of their original photoluminescent quantum yields,comparing favorably with those(<60%)of QDs patterned without photosensitizers.We further extended the strategy to the direct three-dimensional(3D)printing of QDs.This photosensitizerassisted approach offers a new way for direct two-dimensional(2D)photopatterning and 3D printing of colloidal QDs,with implications in building high-performance QD optoelectronic devices.展开更多
This nanoprinting process allows researchers to 3D print more material on a biochip than ever before,making it easier to study biomedical issues.Making biochips,a key technology in studying disease,just got a little e...This nanoprinting process allows researchers to 3D print more material on a biochip than ever before,making it easier to study biomedical issues.Making biochips,a key technology in studying disease,just got a little easier.This new nanoprinting process?uses gold-plated pyramids,an LED light,and photochemical reactions to print more organic material on the surface of one single biochip than ever before.The technique uses an array of polymer pyramids that are covered in gold and mounted onto an atomic force mi-展开更多
文摘Objective: To investigate the value of 3D printing techniques in the treatment of complex tibial plateau fractures. Methods: From September 2016 to September 2018, 28 patients with complex tibial plateau fractures were treated in our hospital. According to the odevity of hospitalized order, the patients were divided into two groups. Group A used 3D reconstruction, virtually reduction, 3D printing and demonstration of individual fracture model before operation while group B only received conventional process by use X-rays or CT image. Comparison between the two groups was made in operation time, operative blood loss, radiation frequency, surgery instrument cost and knee function score. Results: The follow-up was 14.4 months on average (ranged 6 to 22 months). There was no statistical difference of the surgery instrument cost between the 2 groups (P > 0.05). The operation time of group A was significantly shorter than that of group B (P χ2 = 0.373, P = 0.54). Conclusion: 3D printing techniques can improve surgery effect in complex tibial plateau fractures.
基金supported by the Science and Technology Programme of Shijiazhuang under Grant 151130081A
文摘Due to the attractive performances such as the ability of beam focus,broadband,multi-beam scanning and other features,Luneburg lens antennas are applied in multi-beam antenna,which overcomes the problem of gain loss produced by multi-beam parabolic antenna.Based on 3-D printing technique,Luneburg lens antennas by drilling holes are studied.Permittivity and loss tangent of the equivalent lens materials can be influenced by original materials,hole shapes,hole directions,and porosity.After tests,polystyrene with waxes may be the most appropriate materials for Luneburg lens with high strength.Permittivity with the shape of triangle is the lowest due to the homogeneity.Relative permittivities with the direction at a range of 15°-45°are lower while loss tangent at a range of 0°-30°.Radial directional holes are more appropriate for Luneburg lens.The relative permittivity is decreased with the increment of porosity.After calculations,the forecasts calculated by Looyenga and A-BG theory are more precise.Finally,Luneburg lens with two layers is fabricated by 3-D printing.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
基金supported in part by the General Program of Natural Science Foundation of Hubei Province,China(Grant No.2020CFB548)a Project in 2021 of Science and Technology Support Plan of Guizhou Province,China(Grant No.202158413293820389).
文摘Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.
基金supported by the National Natural Science Foundation of China (Grant No. U1934211)the Open Foundation of National Engineering Research Center of High-speed Railway Construction Technology (Grant No. HSR202005)Scientific Research Project of Hunan Education Department (Grant No.20B596)。
文摘In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.
基金Supported by a grant from the National Natural Science Foundation of China(No.81702622)。
文摘Three-dimensional(3D)printing technology,as a novel technical method,can convert conventional computed tomography(CT)or magnetic resonance imaging(MRI)scans to computer-aided design files and develop a 2D spatial structure into a 3D imaging structure.In recent years,the technology has been widely used in numerous areas,including head and neck surgery,orthopedics,and bio-medicinal research.This article uses examples of 3D printed tumor models to develop Response Evaluation Criteria In Solid Tumors(RECIST)standards to evaluate the changes in tumors.RECIST standard is currently recognized as the standard for assessment of chemotherapy.Under the RECIST standard,changes occurring in tumors before and after the surgery,are evaluated.The assessment depends upon a CT evaluation of the changes in the lesions with the largest diameters.In addition,the disease progression and stability of remission is also assessed.Three-dimensional printing technology is more intuitive in the evaluation of changes to human tumors following chemotherapy and targeted therapy.However,a few reports are available.
基金Supported by the National Natural Science Foundation of China,No.81571881
文摘Enterocutaneous fistulas(ECFs) are great challenges during the open abdomen. The loss of digestive juice, water-electrolyte imbalance and malnutrition are intractable issues during management of ECF. Techniques such as "fistula patch" and vacuumassisted closure therapy have been applied to prevent contamination of open abdominal wounds by intestinal fistula drainage. However, failures are encountered due to high-output fistula and anatomical complexity. Here, we report 3 D-printed patient-personalized fistula stent for ECF treatment based on 3 D reconstruction of the fistula image. Subsequent follow-up demonstrated that this stent was well-implanted and effective to reduce the volume of enteric fistula effluent.
文摘BACKGROUND Open abdomen(OA) has been generally accepted for its magnificent superiority and effectiveness in patients with severe trauma, severe intra-abdominal infection, and abdominal compartment syndrome. In the meantime, OA calls for a mass of nursing and the subsequent enteroatomospheric fistula(EAF), which is one of the most common complications of OA therapy, remains a thorny challenge.CASE SUMMARY Our team applied thermoplastic polyurethane as a befitting material for producing a 3 D-printed "fistula stent" in the management of an EAF patient,who was initially admitted to local hospital because of abdominal pain and distension and diagnosed with bowel obstruction. After a series of operations and OA therapy, the patient developed an EAF.CONCLUSION Application of this novel "fistula stent" resulted in a drastic reduction in the amount of lost enteric effluent and greatly accelerated rehabilitation processes.
文摘Neurosurgeons who perform intracere-bral hemorrhage(ICH)evacuation procedures have lim-ited options for monitoring hematoma evacuation and intraoperatively assessing residual-hematoma burden.In recent years,neuroendoscope-assisted,minimally inva-sive surgery for spontaneous ICH is simple and effective and becoming increasingly common.Many methods are applied in neuronavigation-assisted surgery for ICH evac-uation,such as neuroendoscopy,three-dimensional(3D)reconstruction,intraoperative ultrasound,and stereotac-tic craniotomy.Compared with a traditional craniotomy operation,hematoma removal(using methods of accurate localization)can reduce iatrogenic damage,protect white matter,and shorten patients’recovery time.This paper mainly outlines the treatment of basal ganglia-cerebral hemorrhage with neuroendoscopy assistance using local-ization techniques.
基金financial support from the National Natural Science Foundation of China(Nos.52004137,52121003,51727807,12032013 and 11972209)Fundamental Research Funds for the Central Universities(No.2022XJAQ01)。
文摘The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.
基金The study is financially supported by the National Major Research Instrument Development Project of the National Natural Science Foundation of China(Grant No.51627812)the National Natural Science Foundation of China(Grant No.52078181)the Natural Science Foundation of Hebei Province,China(Grant No.E2019202484)。
文摘Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB1107200)the National Natural Science Foundation of China(Grant No.51772270)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2018-WNLOKF005)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences.
文摘Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.
基金sponsored by the Beijing Municipal Science and Technology Project(No.KM202010005003)he Beijing Nova Program(No.20220484008)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission.
文摘Barium titanate(BaTiO_(3))piezoelectric ceramics with triply periodic minimal surface(TPMS)structures have been frequently used in filters,engines,artificial bones,and other fields due to their high specific surface area,high thermal stability,and good heat dissipation.However,only a limited number of studies have analyzed the effect of various parameters,such as different wall thicknesses and porosities of TPMS structures,on ceramic electromechanical performance.In this study,we first employed vat photopolymerization(VPP)three-dimensional(3D)printing technology to fabricate high-performance BaTiO_(3) ceramics.We investigated the slurry composition design and forming process and designed a stepwise sintering postprocessing technique to achieve a density of 96.3%and a compressive strength of 250±25 MPa,with the piezoelectric coefficient(d_(33))reaching 263 pC/N.Subsequently,we explored the influence of three TPMS structures,namely,diamond,gyroid,and Schwarz P,on the piezoelectric and mechanical properties of BaTiO_(3) ceramics,with the gyroid structure identified as exhibiting optimal performance.Finally,we examined the piezoelectric and mechanical properties of BaTiO_(3) ceramics with the gyroid structure of varying wall thicknesses and porosities,thus enabling the modulation of ceramic electromechanical performance.
基金supported by National Key Research and Development Program of China(No.2022YFB3602805)(H.Z.)the National Natural Science Foundation of China(No.22274087)(H.Z.)Tsinghua University Dushi Program(H.Z.).
文摘Direct photopatterning is a powerful strategy for patterning colloidal quantum dots(QDs)for their integration in various electronic and optoelectronic devices.However,ultraviolet(UV)exposure required for QD patterning,especially those with short wavelength(e.g.,deep UV light),can degrade the photo-,and electroluminescence,and other properties of patterned QDs.Here we develop a photosensitizer-assisted approach for direct photopatterning of QDs with h-line(centered at 405 nm)UV light and better preservation of their luminescent properties.This approach uses a photosensitizer that can absorb the h-line UV light and transfer the energy to activate bisazide-based crosslinkers via Dexter energy transfer.Uniform,high-resolution(smallest feature size,2μm),and full-color patterns of red,green,and blue QD layers can be achieved.The patterned QD layers maintain up to~90%of their original photoluminescent quantum yields,comparing favorably with those(<60%)of QDs patterned without photosensitizers.We further extended the strategy to the direct three-dimensional(3D)printing of QDs.This photosensitizerassisted approach offers a new way for direct two-dimensional(2D)photopatterning and 3D printing of colloidal QDs,with implications in building high-performance QD optoelectronic devices.
文摘This nanoprinting process allows researchers to 3D print more material on a biochip than ever before,making it easier to study biomedical issues.Making biochips,a key technology in studying disease,just got a little easier.This new nanoprinting process?uses gold-plated pyramids,an LED light,and photochemical reactions to print more organic material on the surface of one single biochip than ever before.The technique uses an array of polymer pyramids that are covered in gold and mounted onto an atomic force mi-