Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging proces...Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.展开更多
This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initial...This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR.展开更多
A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging ti...A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.展开更多
Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages ...Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages of precisely predicting the boundary configuration of the deformed material, and of efficiently avoiding hexahedron remeshing processes. The key idea of the prediction-correction ALE FEM is elaborated in detail. Accordingly, the strategy of mesh quality control, one of the key enabling techniques for the 3D bulk forming process numerical simulation by the prediction-correction ALE FEM is carefully investigated, and the algorithm for hexahedral element refinement is formulated based on the mesh distortion energy.展开更多
Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not ac...Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.展开更多
The pile-supported subgrade has been widely used in high-speed railway construction in China.To investigate the ground vibrations of such composite foundation subjected to moving loads induced by high-speed trains(HST...The pile-supported subgrade has been widely used in high-speed railway construction in China.To investigate the ground vibrations of such composite foundation subjected to moving loads induced by high-speed trains(HSTs),three-dimensional(3D)finite element method(FEM)models involving the pile,pile cap and cushion are established.Validation of the proposed model is conducted through comparison of model predictions with the field measurements.On this basis,ground vibrations generated by HSTs under different train speeds as well as the ground vibration attenuation with the distance away from the track centerline are investigated.In addition,the effects of piles and pile elastic modulus on ground vibrations are well studied.Results show that the pile-reinforcement of the subgrade could significantly contribute to the reduction of ground vibrations.In particular,the increase of elastic modulus of pile could lead to consistent reduction of ground vibrations.However,when the pile elastic modulus is beyond 10 GPa,this benefit of pile-reinforcement on vibration isolation can hardly be increased further.展开更多
In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. B...In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. Because of the harsh environment of seafloor,high pressure and highly conductive seawater,marine magnetotelluric method developed slowly. The sea floor environment is similar to the environment of logging, According to the design of dual lateral logging equipment,a new equipment for seafloor electrical resistivity measurement is designed. Four 3D FEM models that contain resistivity abnormal targets are built to test the ability of this equipment to locate different shape of shallow buried resistivity abnormal targets in sea mud. The authors propose the method to correct the response curve while the bottom surface of this equipment is suspended or not parallel to the seafloor. The resistivity of targets can be calculated accurately.展开更多
基金Projects(51175363,51274149)supported by the National Natural Science Foundation of China
文摘Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.
文摘This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR.
基金sponsored by Study on High-Precision Logging While Drilling Imaging Technology of Low-Permeability Reservoirs(No.2016ZX05021-002)
文摘A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.
基金the National Natural Science Foundation of China(No.50275094).
文摘Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages of precisely predicting the boundary configuration of the deformed material, and of efficiently avoiding hexahedron remeshing processes. The key idea of the prediction-correction ALE FEM is elaborated in detail. Accordingly, the strategy of mesh quality control, one of the key enabling techniques for the 3D bulk forming process numerical simulation by the prediction-correction ALE FEM is carefully investigated, and the algorithm for hexahedral element refinement is formulated based on the mesh distortion energy.
文摘Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.
基金Project(51978510)supported by the National Natural Science Foundation of China。
文摘The pile-supported subgrade has been widely used in high-speed railway construction in China.To investigate the ground vibrations of such composite foundation subjected to moving loads induced by high-speed trains(HSTs),three-dimensional(3D)finite element method(FEM)models involving the pile,pile cap and cushion are established.Validation of the proposed model is conducted through comparison of model predictions with the field measurements.On this basis,ground vibrations generated by HSTs under different train speeds as well as the ground vibration attenuation with the distance away from the track centerline are investigated.In addition,the effects of piles and pile elastic modulus on ground vibrations are well studied.Results show that the pile-reinforcement of the subgrade could significantly contribute to the reduction of ground vibrations.In particular,the increase of elastic modulus of pile could lead to consistent reduction of ground vibrations.However,when the pile elastic modulus is beyond 10 GPa,this benefit of pile-reinforcement on vibration isolation can hardly be increased further.
文摘In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. Because of the harsh environment of seafloor,high pressure and highly conductive seawater,marine magnetotelluric method developed slowly. The sea floor environment is similar to the environment of logging, According to the design of dual lateral logging equipment,a new equipment for seafloor electrical resistivity measurement is designed. Four 3D FEM models that contain resistivity abnormal targets are built to test the ability of this equipment to locate different shape of shallow buried resistivity abnormal targets in sea mud. The authors propose the method to correct the response curve while the bottom surface of this equipment is suspended or not parallel to the seafloor. The resistivity of targets can be calculated accurately.