A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from d...A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from design path.The influence of flatness on the performance of the torque converter was evaluated.The software CFX and standard k-ε model were adopted to simulate the internal flow fields of the torque converter under different flatness ratios.The results indicated that the performance of the torque converter got worse as the flatness declined,but the capacity of pump increased.The efficiency and the torque ratio dropped slightly as the flatness ratio decreased.So the torque converter could be squashed appropriately to get high power density without too much efficiency sacrifice.But when the flatness ratio was below 0.2,there was a significant drop in the efficiency.展开更多
Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical...Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows.展开更多
Large-head variable-amplitude pump turbines(PTs) encounter serious transient hydraulic instability issues. To explore the evolution mechanisms of pressure fluctuations(PFs) and flow patterns inside large-head variable...Large-head variable-amplitude pump turbines(PTs) encounter serious transient hydraulic instability issues. To explore the evolution mechanisms of pressure fluctuations(PFs) and flow patterns inside large-head variable-amplitude PTs, the load rejection process(LRP) was investigated using a one-and three-dimensional coupled flow simulation approach. The temporal,spatial, and frequency characteristics of the fluctuating pressures were analyzed for four monitoring points using a combined time-frequency analysis approach. The results indicated that PFs during the LRP of large-head variable-amplitude PTs had a new fluctuation frequency component related to Dean vortices(DVs) in the volute, in addition to the common fluctuation frequency components related to rotor-stator interaction phenomena and local backflow vortices near the impeller inlet. The PF frequency component existed throughout the LRP and had a significant influence on the transient maximum pressure at the volute end. This study provides a useful theoretical guide for the design and optimization of large-head variable-amplitude PTs.展开更多
基金Supported by the National Natural Science Foundation of China (50905016)
文摘A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from design path.The influence of flatness on the performance of the torque converter was evaluated.The software CFX and standard k-ε model were adopted to simulate the internal flow fields of the torque converter under different flatness ratios.The results indicated that the performance of the torque converter got worse as the flatness declined,but the capacity of pump increased.The efficiency and the torque ratio dropped slightly as the flatness ratio decreased.So the torque converter could be squashed appropriately to get high power density without too much efficiency sacrifice.But when the flatness ratio was below 0.2,there was a significant drop in the efficiency.
基金the support of the National Natural Science Foundation of China(51006106)Research Project of Lianyungang(CXY1202)the National High Technology Research and Development of China 863 Program(2006AA05A103)
文摘Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows.
基金supported by the National Natural Science Foundation of China(Grant Nos.52209108 and 52079034)Sichuan Science and Technology Program(Grant No.2023YFQ0021)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2023E058)China Postdoctoral Science Foundation(Grant No.2022M720948)。
文摘Large-head variable-amplitude pump turbines(PTs) encounter serious transient hydraulic instability issues. To explore the evolution mechanisms of pressure fluctuations(PFs) and flow patterns inside large-head variable-amplitude PTs, the load rejection process(LRP) was investigated using a one-and three-dimensional coupled flow simulation approach. The temporal,spatial, and frequency characteristics of the fluctuating pressures were analyzed for four monitoring points using a combined time-frequency analysis approach. The results indicated that PFs during the LRP of large-head variable-amplitude PTs had a new fluctuation frequency component related to Dean vortices(DVs) in the volute, in addition to the common fluctuation frequency components related to rotor-stator interaction phenomena and local backflow vortices near the impeller inlet. The PF frequency component existed throughout the LRP and had a significant influence on the transient maximum pressure at the volute end. This study provides a useful theoretical guide for the design and optimization of large-head variable-amplitude PTs.