期刊文献+
共找到2,435篇文章
< 1 2 122 >
每页显示 20 50 100
SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation
1
作者 Suyi Liu Jianning Chi +2 位作者 Chengdong Wu Fang Xu Xiaosheng Yu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4471-4489,共19页
In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and... In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation. 展开更多
关键词 3d point cloud semantic segmentation long-range contexts global-local feature graph convolutional network dense-sparse sampling strategy
下载PDF
Research on BIM Model Reshaping Method Based on 3D Point Cloud Recognition
2
作者 SHI Jin-yu YU Xian-feng +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期125-135,共11页
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog... In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value. 展开更多
关键词 3d point cloud RandLA-Net network BIM model OSG engine
下载PDF
Hand Gesture Recognition Using Appearance Features Based on 3D Point Cloud 被引量:2
3
作者 Yanwen Chong Jianfeng Huang Shaoming Pan 《Journal of Software Engineering and Applications》 2016年第4期103-111,共9页
This paper presents a method for hand gesture recognition based on 3D point cloud. Digital image processing technology is used in this research. Based on the 3D point from depth camera, the system firstly extracts som... This paper presents a method for hand gesture recognition based on 3D point cloud. Digital image processing technology is used in this research. Based on the 3D point from depth camera, the system firstly extracts some raw data of the hand. After the data segmentation and preprocessing, three kinds of appearance features are extracted, including the number of stretched fingers, the angles between fingers and the gesture region’s area distribution feature. Based on these features, the system implements the identification of the gestures by using decision tree method. The results of experiment demonstrate that the proposed method is pretty efficient to recognize common gestures with a high accuracy. 展开更多
关键词 Human-Computer-Interaction Gesture Recognition 3d point cloud Depth Image
下载PDF
A Random Fusion of Mix 3D and Polar Mix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
4
作者 Bo Liu Li Feng Yufeng Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期845-862,共18页
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information throu... This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis. 展开更多
关键词 3d lidar point cloud data augmentation RandomFusion semantic segmentation
下载PDF
A Fast Compression Framework Based on 3D Point Cloud Data for Telepresence 被引量:2
5
作者 Zun-Ran Wang Chen-Guang Yang Shi-Lu Dai 《International Journal of Automation and computing》 EI CSCD 2020年第6期855-866,共12页
In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is... In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box.The other part is applied to remove the temporal redundancy of the 3D point cloud data.The temporal redundancy between point clouds is removed by using the motion vector,i.e.,the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame.The hrst,the B-SHOT(binary signatures of histograms orientation)descriptor is applied to represent the point feature for matching the corresponding point between two frames.The second,the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame.The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames.Finally,the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the curren t and the motion vectors are transmit ted into the rem ote end.In order to reduce calculation time of the B-SHOT descriptor,we introduce an octree structure into the B-SHOT descriptor.In particular,in order to improve the robustness of the matching operation,we design the cluster feature to estimate the similarity bet ween two clusters.Experimen tai results have shown the bet ter performance of the proposed method due to the lower calculation time and the higher compression ratio.The proposed met hod achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under conditions of similar distortion rate. 展开更多
关键词 3d point cloud compression motion estimation signatures of histograms orientation 3d point cloud matching predicted frame and intra frame.
原文传递
Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data 被引量:9
6
作者 邸凯昌 岳宗玉 +1 位作者 刘召芹 王树良 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期125-135,共11页
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b... A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies. 展开更多
关键词 Mars rover rock extraction rover image 3d point cloud data.
原文传递
A LiDAR Point Clouds Dataset of Ships in a Maritime Environment
7
作者 Qiuyu Zhang Lipeng Wang +2 位作者 Hao Meng Wen Zhang Genghua Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1681-1694,共14页
For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac... For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset. 展开更多
关键词 3d point clouds dataset dynamic tail wave fog simulation rainy simulation simulated data
下载PDF
GridNet:efficiently learning deep hierarchical representation for 3D point cloud understanding 被引量:2
8
作者 Huiqun WANG Di HUANG Yunhong WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期1-9,共9页
In this paper,we propose a novel and effective approach,namely GridNet,to hierarchically learn deep representation of 3D point clouds.It incorporates the ability of regular holistic description and fast data processin... In this paper,we propose a novel and effective approach,namely GridNet,to hierarchically learn deep representation of 3D point clouds.It incorporates the ability of regular holistic description and fast data processing in a single framework,which is able to abstract powerful features progressively in an efficient way.Moreover,to capture more accurate internal geometry attributes,anchors are inferred within local neighborhoods,in contrast to the fixed or the sampled ones used in existing methods,and the learned features are thus more representative and discriminative to local point distribution.GridNet delivers very competitive results compared with the state of the art methods in both the object classification and segmentation tasks. 展开更多
关键词 3d point clouds deep representations
原文传递
Human-robot shared control system based on 3D point cloud and teleoperation
9
作者 YANG ChenGuang ZHANG Ying +1 位作者 ZHAO GuanYi CHENG Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第8期2406-2414,共9页
Owing to the constraints of unstructured environments,it is difficult to ensure safe,accurate,and smooth completion of tasks using autonomous robots.Moreover,for small-batch and customized tasks,autonomous operation r... Owing to the constraints of unstructured environments,it is difficult to ensure safe,accurate,and smooth completion of tasks using autonomous robots.Moreover,for small-batch and customized tasks,autonomous operation requires path planning for each task,thus reducing efficiency.We propose a human-robot shared control system based on a 3D point cloud and teleoperation for a robot to assist human operators in the performance of dangerous and cumbersome tasks.The system leverages the operator’s skills and experience to deal with emergencies and perform online error correction.In this framework,a depth camera acquires the 3D point cloud of the target object to automatically adjust the end-effector orientation.The operator controls the manipulator trajectory through a teleoperation device.The force exerted by the manipulator on the object is automatically adjusted by the robot,thus reducing the workload for the operator and improving the efficiency of task execution.In addition,hybrid force/motion control is used to decouple teleoperation from force control to ensure that force and position regulation will not interfere with each other.The proposed framework was validated using the ELITE robot to perform a force control scanning task. 展开更多
关键词 TELEOPERATION 3d point cloud human-robot shared control hybrid force/motion control
原文传递
A novel method for extracting skeleton of fruit treefrom 3D point clouds
10
作者 Shenglian Lu Guo Li Jian Wang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第6期78-89,共12页
Tree skeleton could be useful to agronomy researchers because the skeleton describes the shape and topological structure of a tree.The phenomenon of organs’mutual occlusion in fruit tree canopy is usually very seriou... Tree skeleton could be useful to agronomy researchers because the skeleton describes the shape and topological structure of a tree.The phenomenon of organs’mutual occlusion in fruit tree canopy is usually very serious,this should result in a large amount of data missing in directed laser scanning 3D point clouds from a fruit tree.However,traditional approaches can be ineffective and problematic in extracting the tree skeleton correctly when the tree point clouds contain occlusions and missing points.To overcome this limitation,we present a method for accurate and fast extracting the skeleton of fruit tree from laser scanner measured 3D point clouds.The proposed method selects the start point and endpoint of a branch from the point clouds by user’s manual interaction,then a backward searching is used to find a path from the 3D point cloud with a radius parameter as a restriction.The experimental results in several kinds of fruit trees demonstrate that our method can extract the skeleton of a leafy fruit tree with highly accuracy. 展开更多
关键词 Skeleton extraction fruit tree 3d point cloud modeling plant structure
原文传递
基于PointCloudTransformer和优化集成学习的三维点云分类
11
作者 于喜俊 段勇 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期143-153,共11页
针对三维点云的不规则性和无序性所导致的难于提取特征并进行分类的问题,提出了一种融合深度学习和集成学习的三维点云分类方法。首先,训练深度学习点云分类网络PointCloudTransformer,并使用主干网络提取点云特征,进而训练基分类器,获... 针对三维点云的不规则性和无序性所导致的难于提取特征并进行分类的问题,提出了一种融合深度学习和集成学习的三维点云分类方法。首先,训练深度学习点云分类网络PointCloudTransformer,并使用主干网络提取点云特征,进而训练基分类器,获得基分类器集合;然后,针对集成学习算法设计基分类器选择模型,模型的优化目标为基分类器组合的差异性和平均总体精度。为了降低集成规模,本文基于增强后的白鲸优化算法提出了二元多目标白鲸优化算法,并使用该算法优化基分类器选择模型,获得集成剪枝方案集合;最后,采用多数投票法集成每个基分类器组合在测试集点云特征上的分类结果,获得最优基分类器组合,从而构建基于多目标优化剪枝的集成学习点云分类模型。在点云分类数据集上的实验结果表明,本文方法使用了更小的集成规模,获得了更高的集成精度,能够对多类别三维点云进行准确分类。 展开更多
关键词 三维点云分类 深度学习 集成学习 白鲸优化算法 多目标优化
下载PDF
Building Facade Point Clouds Segmentation Based on Optimal Dual-Scale Feature Descriptors
12
作者 Zijian Zhang Jicang Wu 《Journal of Computer and Communications》 2024年第6期226-245,共20页
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca... To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings. 展开更多
关键词 3d Laser Scanning point clouds Building Facade Segmentation point cloud Processing Feature Descriptors
下载PDF
改进的3D-BoNet算法应用于点云实例分割与三维重建 被引量:1
13
作者 郭宝云 姚玉凯 +3 位作者 李彩林 王悦 孙娜 鲁一慧 《测绘通报》 CSCD 北大核心 2024年第6期30-35,共6页
为了更好地利用点云数据重建室内三维模型,本文提出了一种基于3D-BoNet-IAM算法的室内场景三维重建方法。该方法通过改进3D-BoNet算法提高点云数据的实例分割精度。针对点云数据缺失问题,提出了基于平面基元合并优化的拟合平面方法,利... 为了更好地利用点云数据重建室内三维模型,本文提出了一种基于3D-BoNet-IAM算法的室内场景三维重建方法。该方法通过改进3D-BoNet算法提高点云数据的实例分割精度。针对点云数据缺失问题,提出了基于平面基元合并优化的拟合平面方法,利用拟合得到的新平面重建建筑表面模型。在S3DIS和ScanNet V2数据集上验证3D-BoNet算法的改进效果。试验结果表明,本文提出的3D-BoNet-IAM算法比原始算法分割精度提高了3.3%;对比本文建模效果与其他建模效果发现,本文方法的建模效果更准确。本文方法能够提高室内点云数据的实例分割精度,同时得到高质量的室内三维模型。 展开更多
关键词 点云数据 3d-BoNet-IAM 三维重建 实例分割 平面基元
下载PDF
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
14
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3d point cloud data LiDAR(light detection and ranging) Surface vehicle
下载PDF
3D Ice Shape Description Method Based on BLSOM Neural Network
15
作者 ZHU Bailiu ZUO Chenglin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期70-80,共11页
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t... When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape. 展开更多
关键词 icing wind tunnel test ice shape batch-learning self-organizing map neural network 3d point cloud
下载PDF
基于PointNet++的邻域特征增强点云语义分割方法
16
作者 李松 张安思 +1 位作者 伍婕 张保 《激光杂志》 CAS 北大核心 2024年第7期174-179,共6页
随着智能驾驶、机器人导航等以点云为基础的应用蓬勃发展,点云语义分割逐渐成为研究热点。然而,现有的点云语义分割方法存在局部特征提取不充分、特征融合不完整的缺陷。针对这些不足,提出了对应的解决方案。对于局部特征提取不充分的现... 随着智能驾驶、机器人导航等以点云为基础的应用蓬勃发展,点云语义分割逐渐成为研究热点。然而,现有的点云语义分割方法存在局部特征提取不充分、特征融合不完整的缺陷。针对这些不足,提出了对应的解决方案。对于局部特征提取不充分的现象,通过嵌入邻域点的坐标、方向、距离等相关信息去关联邻域点的显式特征。对于特征融合不完整的现象,提出了一种最大池化与自注意力池化相结合的混合池化方法。网络架构基于PointNet++,并结合提出的局部特征提取和融合方法,在S3DIS数据集上的实验结果表明,与基线方法PointNet++相比,各评价指标都有不同程度的提高,证实了新方法的有效性和优越性。 展开更多
关键词 三维点云 语义分割 特征提取 深度学习
下载PDF
基于无人机3D点云的高陡斜坡岩体结构特征
17
作者 宋琨 仪政 宋琪 《长江科学院院报》 CSCD 北大核心 2024年第5期103-107,共5页
岩体结构控制着岩质斜坡的变形破坏模式,但传统的结构面信息调查方法存在危险性高、难度大的缺陷。为安全、高效地获取斜坡岩体结构信息,利用无人机摄影技术开展高陡岩质斜坡的测量,构建斜坡岩体的3D点云模型,识别结构面的产状、间距、... 岩体结构控制着岩质斜坡的变形破坏模式,但传统的结构面信息调查方法存在危险性高、难度大的缺陷。为安全、高效地获取斜坡岩体结构信息,利用无人机摄影技术开展高陡岩质斜坡的测量,构建斜坡岩体的3D点云模型,识别结构面的产状、间距、迹长等岩体结构信息。对湖北秭归卡门子湾滑坡区调查验证,斜坡共发育6组优势结构面,平均间距为0.46~1.01 m,平均迹长为0.82~12.57 m;无人机3D点云获取的岩体结构信息精度满足要求,方法高效、可行;获得的岩体结构信息为斜坡岩体结构模型建立和稳定性评价等工作提供了可靠的数据基础。 展开更多
关键词 高陡斜坡 无人机点云 结构面产状 结构面间距 结构面迹长
下载PDF
一种多层多模态融合3D目标检测方法
18
作者 周治国 马文浩 《电子学报》 EI CAS CSCD 北大核心 2024年第3期696-708,共13页
在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段... 在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段融合算法难以充分融合二者的特征.为此,本文提出一种新的多层多模态融合的3D目标检测方法:首先,前融合阶段通过在2D检测框形成的锥视区内对点云进行局部顺序的色彩信息(Red Green Blue,RGB)涂抹编码;然后将编码后点云输入融合了自注意力机制上下文感知的通道扩充PointPillars检测网络;后融合阶段将2D候选框与3D候选框在非极大抑制之前编码为两组稀疏张量,利用相机激光雷达对象候选融合网络得出最终的3D目标检测结果.在KITTI数据集上进行的实验表明,本融合检测方法相较于纯点云网络的基线上有了显著的性能提升,平均mAP提高了6.24%. 展开更多
关键词 自动驾驶 多传感器融合 3d目标检测 点云编码 自注意力机制
下载PDF
基于多分支特征融合的车载激光雷达3D目标检测算法
19
作者 金伟正 孙原 李方玉 《实验技术与管理》 CAS 北大核心 2024年第1期37-43,共7页
该文基于多分支特征融合的3D目标检测算法将无序的点云划分为规则的体素,利用体素特征编码模块和卷积神经网络学习体素特征,再将稀疏的3D数据压缩为稠密的二维鸟瞰图,最后通过2D骨干网络的粗糙分支和精细分支对多尺度鸟瞰图特征进行深... 该文基于多分支特征融合的3D目标检测算法将无序的点云划分为规则的体素,利用体素特征编码模块和卷积神经网络学习体素特征,再将稀疏的3D数据压缩为稠密的二维鸟瞰图,最后通过2D骨干网络的粗糙分支和精细分支对多尺度鸟瞰图特征进行深度融合。该文实现了对多尺度特征的语义信息、纹理信息和上下文信息的聚合,得到了更加精确的原始空间位置信息、物体分类、位置回归和朝向预测,在KITTI数据集上取得优异的平均精度,并在保持一定帧率的同时具有较强的稳健性。 展开更多
关键词 激光雷达点云 3d目标检测 感受域 特征融合
下载PDF
基于深度学习与点云数据的3D检测系统应用研究
20
作者 李雅峰 《微型电脑应用》 2024年第2期62-65,共4页
为了解决高低差场景中平坦度高的2D视觉检测乏力的问题,基于深度学习和点云数据处理平台,融合3D点云格式图像和深度学习技术,建立微米精度、在线检测、成本可控的3D检测架构机制。采用相移和光栅投影结构光技术的硬件方案获取3D点云原... 为了解决高低差场景中平坦度高的2D视觉检测乏力的问题,基于深度学习和点云数据处理平台,融合3D点云格式图像和深度学习技术,建立微米精度、在线检测、成本可控的3D检测架构机制。采用相移和光栅投影结构光技术的硬件方案获取3D点云原始数据,基于强大的CPU和GPU处理芯片,对经过被测物体调制的光栅图案进行重新编码,并结合标定参数解算3D点云数据。对2D深度学习模型进行升级开发,可对点云数据进行标注、学习训练和检测,并将3D硬件、3D软件和3D算法进行整合。实验结果表明,所提系统有利于3D缺陷检测系统的落地,为智能3D检测设备奠定算法和软件基础。 展开更多
关键词 3d检测 深度学习 点云数据 智能软件 3d模型
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部