We introduce in this paper an extension of the Multimodal Compression technique (MC) for the purpose of coding hyperspectral image sequences. The main idea requires few steps, namely: (1) reducing the size of the sequ...We introduce in this paper an extension of the Multimodal Compression technique (MC) for the purpose of coding hyperspectral image sequences. The main idea requires few steps, namely: (1) reducing the size of the sequence by inserting smooth images containing less information into the remaining images of the same sequence, (2) then coding the new compacted sequence using 3D-SPIHT algorithm. In this new scheme, called MC-3D-SPIHT, the insertion is achieved only in the contour of each image, according to a non-supervised way, so that one can preserve the Region of Interest (ROI) quality. For this purpose, a mixing function is employed. After the decoding process, inserted images are extracted by a separation function and the original sequence is reconstructed. By considering data from AVIRIS database, we will show how one decrease significantly the computing time for both coding and decoding.展开更多
文摘We introduce in this paper an extension of the Multimodal Compression technique (MC) for the purpose of coding hyperspectral image sequences. The main idea requires few steps, namely: (1) reducing the size of the sequence by inserting smooth images containing less information into the remaining images of the same sequence, (2) then coding the new compacted sequence using 3D-SPIHT algorithm. In this new scheme, called MC-3D-SPIHT, the insertion is achieved only in the contour of each image, according to a non-supervised way, so that one can preserve the Region of Interest (ROI) quality. For this purpose, a mixing function is employed. After the decoding process, inserted images are extracted by a separation function and the original sequence is reconstructed. By considering data from AVIRIS database, we will show how one decrease significantly the computing time for both coding and decoding.