Depth image based rendering (DIBR) is an effective approach for virtual view synthesis in free viewpoint television and 3D video.One of the important steps in DIBR is filling the holes caused by disoeclusion regions...Depth image based rendering (DIBR) is an effective approach for virtual view synthesis in free viewpoint television and 3D video.One of the important steps in DIBR is filling the holes caused by disoeclusion regions and wrong depth values.Most of the existing hole-filling methods work well in areas of low spatial activity but fail to obtain satisfactory results in high spatial activity regions.In this paper,we combine the depth based hole-filling and the adaptive recursive interpolation algorithm which is capable of handling edges passing through the missing areas.Accoring to the experimental results,we confirm that the depth based adaptive recursive interpolation algorithm can provide better rendering quality objectively and subjectively.展开更多
This paper presents an innovative method for digital refocusing of different point in space after capturing and also extracts all-in-focus image. The proposed method extracts all-in-focus image using Michelson contras...This paper presents an innovative method for digital refocusing of different point in space after capturing and also extracts all-in-focus image. The proposed method extracts all-in-focus image using Michelson contrast formula hence, it helps in calculating the coordinates of the 3D object location. With light field integral camera setup the scene to capture the objects precisely positioned in a measurable distance from the camera therefore, it helps in refocusing process to return the original location where the object is focused;else it will be blurred with less contrast. The highest contrast values at different points in space can return the focused points where the objects are initially positioned as a result;all-in-focus image can also be obtained. Detailed experiments are conducted to demonstrate the credibility of proposed method with results.展开更多
虚拟视点合成技术是实现自由视点电视和三维电影最主要的技术之一,已成为三维高效视频编码(3D High Efficiency Video Coding,3D-HEVC)实时渲染领域的研究热点。本文在介绍虚拟视点合成技术的基础上,综述虚拟视点合成技术的研究进展。...虚拟视点合成技术是实现自由视点电视和三维电影最主要的技术之一,已成为三维高效视频编码(3D High Efficiency Video Coding,3D-HEVC)实时渲染领域的研究热点。本文在介绍虚拟视点合成技术的基础上,综述虚拟视点合成技术的研究进展。总结了基于像素填充和基于样本填充方法在空洞填充中的应用,分析比较了不同滤波算法下深度图预处理对合成视图质量的影响以及帧间运动估计中的3种快速算法。展开更多
Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts ...Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.展开更多
针对光电成像制导景象匹配中图像产生较大几何形变的问题,提出了一种基于快速鲁棒性特征(speeded up robust feature,SURF)的景象匹配算法。SURF提取的图像特征具有尺度和旋转不变性,对灰度不敏感,并能快速运算。算法首先利用仿射变换...针对光电成像制导景象匹配中图像产生较大几何形变的问题,提出了一种基于快速鲁棒性特征(speeded up robust feature,SURF)的景象匹配算法。SURF提取的图像特征具有尺度和旋转不变性,对灰度不敏感,并能快速运算。算法首先利用仿射变换对基准图像进行3D视角补偿,模拟基准图像在不同视角下的成像,以减小基准图像和实时图像间的视角差异,分别提取两图像的SURF特征,然后根据最小欧氏距离准则提取两图像间匹配的SURF特征点对,根据该特征点对估计基础矩阵,得到两图像的投影关系。仿真结果表明,该算法能够适应光电成像制导中图像的几何形变,实现稳定的景象匹配。展开更多
基金The MSIP(Ministry of Science,ICT & Future Planning),Korea,under the ITRC(Information Technology Research Center)support program(NIPA-2013-H0301-13-2006)supervised by the NIPA(National IT Industry Promotion Agency)
文摘Depth image based rendering (DIBR) is an effective approach for virtual view synthesis in free viewpoint television and 3D video.One of the important steps in DIBR is filling the holes caused by disoeclusion regions and wrong depth values.Most of the existing hole-filling methods work well in areas of low spatial activity but fail to obtain satisfactory results in high spatial activity regions.In this paper,we combine the depth based hole-filling and the adaptive recursive interpolation algorithm which is capable of handling edges passing through the missing areas.Accoring to the experimental results,we confirm that the depth based adaptive recursive interpolation algorithm can provide better rendering quality objectively and subjectively.
文摘This paper presents an innovative method for digital refocusing of different point in space after capturing and also extracts all-in-focus image. The proposed method extracts all-in-focus image using Michelson contrast formula hence, it helps in calculating the coordinates of the 3D object location. With light field integral camera setup the scene to capture the objects precisely positioned in a measurable distance from the camera therefore, it helps in refocusing process to return the original location where the object is focused;else it will be blurred with less contrast. The highest contrast values at different points in space can return the focused points where the objects are initially positioned as a result;all-in-focus image can also be obtained. Detailed experiments are conducted to demonstrate the credibility of proposed method with results.
文摘虚拟视点合成技术是实现自由视点电视和三维电影最主要的技术之一,已成为三维高效视频编码(3D High Efficiency Video Coding,3D-HEVC)实时渲染领域的研究热点。本文在介绍虚拟视点合成技术的基础上,综述虚拟视点合成技术的研究进展。总结了基于像素填充和基于样本填充方法在空洞填充中的应用,分析比较了不同滤波算法下深度图预处理对合成视图质量的影响以及帧间运动估计中的3种快速算法。
基金supported by the National Natural Science Foundation of China(Grant No.60832003)Key Laboratory of Advanced Display and System Application(Shanghai University),Ministry of Education,China(Grant No.P200902)the Key Project of Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)
文摘Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.
文摘针对光电成像制导景象匹配中图像产生较大几何形变的问题,提出了一种基于快速鲁棒性特征(speeded up robust feature,SURF)的景象匹配算法。SURF提取的图像特征具有尺度和旋转不变性,对灰度不敏感,并能快速运算。算法首先利用仿射变换对基准图像进行3D视角补偿,模拟基准图像在不同视角下的成像,以减小基准图像和实时图像间的视角差异,分别提取两图像的SURF特征,然后根据最小欧氏距离准则提取两图像间匹配的SURF特征点对,根据该特征点对估计基础矩阵,得到两图像的投影关系。仿真结果表明,该算法能够适应光电成像制导中图像的几何形变,实现稳定的景象匹配。