Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study,with a 3D computational fluid dynami...Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study,with a 3D computational fluid dynamics package,which includes the immersed boundary method and the volume of fluid method,the adaptive multi-grid finite volume method,and the control strategy of fish swimming.Firstly,the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory.With the change of swimming speed,the contributions of the fish body and caudal fin to thrust are analyzed quantitatively.The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper.Finally,the 3D wake structure of self-propelled swimming of 3D bionic fish is presented.The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.展开更多
Numerical simulations of self-propelled swimming of a three dimensional bionic fish and fish school in a viscous fluid are carried out. This is done with the assistance of a parallel software package produced for 3D m...Numerical simulations of self-propelled swimming of a three dimensional bionic fish and fish school in a viscous fluid are carried out. This is done with the assistance of a parallel software package produced for 3D moving boundary problems. This computational fluid dynamics package combines the adaptive multi-grid finite volume method, the immersed boundary method and VOF (volume of fluid) method. By using the package results of the self-propelled swimming of a 3D bionic fish and fish school in a vis- cous fluid are obtained. With comparison to the existing experimental measurements of living fishes, the predicted structure of vortical wakes is in good agreement with the measurements.展开更多
Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish,to increase the swimming efficiency and the swimming speed and control the motion direction more easily,is investigated by com...Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish,to increase the swimming efficiency and the swimming speed and control the motion direction more easily,is investigated by combining optimization algorithms,unsteady computational fluid dynamics and dynamic control in this study.The 3D computational fluid dynamics package contains the immersed boundary method,volume of fluid method,the adaptive multi-grid finite volume method and the control strategy of fish swimming.Through shape optimizations of various swimming speeds,the results show that the optimal caudal fins of different swimming modes are not exactly the same shape.However,the optimal fish of high swimming speed,whose caudal fin shape is similar to the crescent,also have higher efficiency and better maneuverability than the other optimal bionic fish at low and moderate swimming speeds.Finally,the mechanisms of vorticity creation of different optimal bionic fish are studied by using boundary vorticity-flux theory,and three-dimensional wake structures of self-propelled swimming of these fish are comparatively analyzed.The study of vortex dynamics reveals the nature of efficient swimming of the 3D bionic fish with the lunate caudal fin.展开更多
Based on the boundary vorticity-flux theory,topology optimization of the caudal fin of the three-dimensional self-propelled swimming fish is investigated by combining unsteady computational fluid dynamics with moving ...Based on the boundary vorticity-flux theory,topology optimization of the caudal fin of the three-dimensional self-propelled swimming fish is investigated by combining unsteady computational fluid dynamics with moving boundary and topology optimization algorithms in this study.The objective functional of topology optimization is the function of swimming efficiency,swimming speed and motion direction control.The optimal caudal fin,whose topology is different from that of the natural fish caudal fin,make the 3D bionic fish achieve higher swimming efficiency,faster swimming speed and better maneuverability.The boundary vorticity-flux on the body surface of the 3D fish before and after optimization reveals the mechanism of high performance swimming of the topology optimization bionic fish.The comparative analysis between the swimming performance of the 3D topology optimization bionic fish and the 3D lunate tail bionic fish is also carried out,and the wake structures of two types of bionic fish show the physical nature that the swimming performance of the 3D topology optimization bionic fish is significantly better than the 3D lunate tail bionic fish.展开更多
基金the support of National Natural Science Foundation of China (Grant No.10672183)
文摘Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study,with a 3D computational fluid dynamics package,which includes the immersed boundary method and the volume of fluid method,the adaptive multi-grid finite volume method,and the control strategy of fish swimming.Firstly,the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory.With the change of swimming speed,the contributions of the fish body and caudal fin to thrust are analyzed quantitatively.The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper.Finally,the 3D wake structure of self-propelled swimming of 3D bionic fish is presented.The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.
基金Supported by the Key Project of National Natural Science Foundation of China (Grant No. 10532040)
文摘Numerical simulations of self-propelled swimming of a three dimensional bionic fish and fish school in a viscous fluid are carried out. This is done with the assistance of a parallel software package produced for 3D moving boundary problems. This computational fluid dynamics package combines the adaptive multi-grid finite volume method, the immersed boundary method and VOF (volume of fluid) method. By using the package results of the self-propelled swimming of a 3D bionic fish and fish school in a vis- cous fluid are obtained. With comparison to the existing experimental measurements of living fishes, the predicted structure of vortical wakes is in good agreement with the measurements.
基金supported by the National Natural Science Foundation of China (Grant No. 10672183)
文摘Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish,to increase the swimming efficiency and the swimming speed and control the motion direction more easily,is investigated by combining optimization algorithms,unsteady computational fluid dynamics and dynamic control in this study.The 3D computational fluid dynamics package contains the immersed boundary method,volume of fluid method,the adaptive multi-grid finite volume method and the control strategy of fish swimming.Through shape optimizations of various swimming speeds,the results show that the optimal caudal fins of different swimming modes are not exactly the same shape.However,the optimal fish of high swimming speed,whose caudal fin shape is similar to the crescent,also have higher efficiency and better maneuverability than the other optimal bionic fish at low and moderate swimming speeds.Finally,the mechanisms of vorticity creation of different optimal bionic fish are studied by using boundary vorticity-flux theory,and three-dimensional wake structures of self-propelled swimming of these fish are comparatively analyzed.The study of vortex dynamics reveals the nature of efficient swimming of the 3D bionic fish with the lunate caudal fin.
基金support of National Natural Science Foundation of China(Grant No.11302071)and National Postdoctoral Foundation of China(Grant No.2013M541597).Our deep appreciation goes to Professor Wei SHYY of Hong Kong University of Science and Technology,for detailed discussion and kindly help.
文摘Based on the boundary vorticity-flux theory,topology optimization of the caudal fin of the three-dimensional self-propelled swimming fish is investigated by combining unsteady computational fluid dynamics with moving boundary and topology optimization algorithms in this study.The objective functional of topology optimization is the function of swimming efficiency,swimming speed and motion direction control.The optimal caudal fin,whose topology is different from that of the natural fish caudal fin,make the 3D bionic fish achieve higher swimming efficiency,faster swimming speed and better maneuverability.The boundary vorticity-flux on the body surface of the 3D fish before and after optimization reveals the mechanism of high performance swimming of the topology optimization bionic fish.The comparative analysis between the swimming performance of the 3D topology optimization bionic fish and the 3D lunate tail bionic fish is also carried out,and the wake structures of two types of bionic fish show the physical nature that the swimming performance of the 3D topology optimization bionic fish is significantly better than the 3D lunate tail bionic fish.