To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data...Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.展开更多
This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly...This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.展开更多
Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by i...Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
Object classification in high-density 3D point clouds with applications in precision farming is a very challenging area due to high intra-class variances and high degrees of occlusions and overlaps due to self-similar...Object classification in high-density 3D point clouds with applications in precision farming is a very challenging area due to high intra-class variances and high degrees of occlusions and overlaps due to self-similarities and densely packed plant organs, especially in ripe growing stages. Due to these application specific challenges, this contribution gives an experimental evaluation of the performance of local shape descriptors (namely Point-Feature Histogram (PFH), Fast-Point-Feature Histogram (FPFH), Signature of Histograms of Orientations (SHOT), Rotational Projection Statistics (RoPS) and Spin Images) in the classification of 3D points into different types of plant organs. We achieve very good results on four representative scans of a leave, a grape bunch, a grape branch and a flower of between 94 and 99% accuracy in the case of supervised classification with an SVM and between 88 and 96% accuracy using a k-means clustering approach. Additionally, different distance measures and the influence of the number of cluster centres are examined.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological...On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological objects are divided into four object classes: point, line, area and volume. The volume class is further divided into four subclasses: the composite volume, the complex volume, the simple volume and the component. Twelve kinds of topological relations and the related data structures are designed for the geological objects.展开更多
A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh f...A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.展开更多
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
The process of segmenting point cloud data into several homogeneous areas with points in the same region having the same attributes is known as 3D segmentation.Segmentation is challenging with point cloud data due to...The process of segmenting point cloud data into several homogeneous areas with points in the same region having the same attributes is known as 3D segmentation.Segmentation is challenging with point cloud data due to substantial redundancy,fluctuating sample density and lack of apparent organization.The research area has a wide range of robotics applications,including intelligent vehicles,autonomous mapping and navigation.A number of researchers have introduced various methodologies and algorithms.Deep learning has been successfully used to a spectrum of 2D vision domains as a prevailing A.I.methods.However,due to the specific problems of processing point clouds with deep neural networks,deep learning on point clouds is still in its initial stages.This study examines many strategies that have been presented to 3D instance and semantic segmentation and gives a complete assessment of current developments in deep learning-based 3D segmentation.In these approaches’benefits,draw backs,and design mechanisms are studied and addressed.This study evaluates the impact of various segmentation algorithms on competitiveness on various publicly accessible datasets,as well as the most often used pipelines,their advantages and limits,insightful findings and intriguing future research directions.展开更多
3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a th...3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.展开更多
We propose a new Geographic Information System (GIS) three-dimensional (3D) data model based on conformal geometric algebra (CGA). In this approach, geographic objects of different dimensions are mapped to the corresp...We propose a new Geographic Information System (GIS) three-dimensional (3D) data model based on conformal geometric algebra (CGA). In this approach, geographic objects of different dimensions are mapped to the corresponding basic elements (blades) in Clifford algebra, and the expressions of multi-dimensional objects are unified without losing their geometric meaning. Geometric and topologic computations are also processed in a clear and coordinates-free way. Under the CGA framework, basic geometrics are constructed and expressed by the inner and outer operators. This expression combined geometrics of different dimensions and metric relations. We present the structure of the framework, data structure design, and the data storage, editing and updating mechanisms of the proposed 3D GIS data model. 3D GIS geometric and topological analyses are performed by CGA metric, geometric and topological operators using an object-oriented approach. Demonstrations with 3D residence district data suggest that our 3D data model expresses effectively geometric objects in different dimensions, which supports computation of both geometric and topological relations. The clear and effective expression and computation structure has the potential to support complex 3D GIS analysis, and spatio-temporal analysis.展开更多
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b...A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies.展开更多
In the face of complicated, diversified three-dimensional world, the existing 3D GIS data models suffer from certain issues such as data incompatibility, insufficiency in data representation and representation types, ...In the face of complicated, diversified three-dimensional world, the existing 3D GIS data models suffer from certain issues such as data incompatibility, insufficiency in data representation and representation types, among others. It is often hard to meet the requirements of multiple application purposes(users) related to GIS spatial data management and data query and analysis, especially in the case of massive spatial objects. In this study, according to the habits of human thinking and recognition, discrete expressions(such as discrete curved surface(DCS), and discrete body(DB)) were integrated and two novel representation types(including function structure and mapping structure) were put forward. A flexible and extensible ubiquitous knowledgeable data representation model(UKRM) was then constructed, in which structurally heterogeneous multiple expressions(including boundary representation(B-rep), constructive solid geometry(CSG), functional/parameter representation, etc.) were normalized. GIS's ability in representing the massive, complicated and diversified 3D world was thus greatly enhanced. In addition, data reuse was realized, and the bridge linking static GIS to dynamic GIS was built up. Primary experimental results illustrated that UKRM was overwhelmingly superior to the current data models(e.g. IFC, City GML) in describing both regular and irregular spatial objects.展开更多
Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical vi...Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.展开更多
Creating and rendering intermediate geometric primitives is one of the approaches to visualize data sets in 3D space. Some algorithms have been developed to construct isosurface from uniformly distributed 3D data sets...Creating and rendering intermediate geometric primitives is one of the approaches to visualize data sets in 3D space. Some algorithms have been developed to construct isosurface from uniformly distributed 3D data sets. These algorithms assume that the function value varies linearly along edges of each cell. But to irregular 3D data sets, this assumption is inapplicable. Moreover, the depth sorting of cells is more complicated for irregular data sets, which is indispensable for generating isosurface images or semitransparent isosurface images, if Z-buffer method is not adopted.In this paper, isosurface models based on the assumption that the function value has nonlinear distribution within a tetrahedroll are proposed. The depth sorting algorithm and data structures are developed for the irregular data sets in which cells may be subdivided into tetrahedra. The implementation issues of this algorithm are discussed and experimental results are shown to illustrate potentials of this technique.展开更多
E lement- partition- based methods for visualization of 3D unstructured grid data are presented. First, partition schemes for common elements, including curvilinear tetrahedra, pentahedra, hexahedra, etc., are given, ...E lement- partition- based methods for visualization of 3D unstructured grid data are presented. First, partition schemes for common elements, including curvilinear tetrahedra, pentahedra, hexahedra, etc., are given, so that complex elements can be divided into several rectilinear tetrahedra, and the visualization processes can be simplified.Then, a slice method for cloud map and an iso-surface method based on the partition schemes are described.展开更多
Legal boundaries are used for delineating the spatial extent of ownership property’s spaces.In underground environments,these boundaries are defined by referencing physical objects,surveying measurements,or projectio...Legal boundaries are used for delineating the spatial extent of ownership property’s spaces.In underground environments,these boundaries are defined by referencing physical objects,surveying measurements,or projections.However,there is a gap in connecting and managing these boundaries and underground legal spaces,due to a lack of data model.A 3D data model supporting underground land administration(ULA)should define and model these boundaries and the relationships between them and underground ownership spaces.Prominent 3D data models can be enriched to model underground legal boundaries.This research aims to propose a new taxonomy of underground legal boundaries and model them by extending CityGML,which is a widely used 3D data model in the geospatial science domain.We developed,implemented,and tested the model for different types of underground legal boundaries.The implemented prototype showcased the potential benefits of CityGML for managing underground legal boundaries in 3D.The proposed 3D underground model can be used to address current challenges associated with communicating and managing legal boundaries in underground environments.While this data model was specifically developed for Victoria,Australia,the proposed model and approach can be used and replicated in other jurisdictions by adjusting the data requirements for underground legal boundaries.展开更多
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
文摘Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.
基金This research is sponsored by by China Natural Science Foundation (40274041), China National Petroleum Corporation (CNPC)Innovation Fund (2002CXKF-3)
文摘This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.
文摘Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
基金the project“Automated Evaluation and Comparison of Grapevine Genotypes by means of Grape Cluster Architecture”which is supported by the Deutsche Forschungsgemeinschaft(funding code:STE 806/2-1).
文摘Object classification in high-density 3D point clouds with applications in precision farming is a very challenging area due to high intra-class variances and high degrees of occlusions and overlaps due to self-similarities and densely packed plant organs, especially in ripe growing stages. Due to these application specific challenges, this contribution gives an experimental evaluation of the performance of local shape descriptors (namely Point-Feature Histogram (PFH), Fast-Point-Feature Histogram (FPFH), Signature of Histograms of Orientations (SHOT), Rotational Projection Statistics (RoPS) and Spin Images) in the classification of 3D points into different types of plant organs. We achieve very good results on four representative scans of a leave, a grape bunch, a grape branch and a flower of between 94 and 99% accuracy in the case of supervised classification with an SVM and between 88 and 96% accuracy using a k-means clustering approach. Additionally, different distance measures and the influence of the number of cluster centres are examined.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
文摘On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological objects are divided into four object classes: point, line, area and volume. The volume class is further divided into four subclasses: the composite volume, the complex volume, the simple volume and the component. Twelve kinds of topological relations and the related data structures are designed for the geological objects.
基金supported by the National Natural Science Foundation of China (Grant Nos.41730965,41775099 and 2017YFC1502104)PAPD (the Priority Academic Program Development of Jiangsu Higher Education Institutions)
文摘A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
基金This research was supported by the BB21 plus funded by Busan Metropolitan City and Busan Institute for Talent and Lifelong Education(BIT)and a grant from Tongmyong University Innovated University Research Park(I-URP)funded by Busan Metropolitan City,Republic of Korea.
文摘The process of segmenting point cloud data into several homogeneous areas with points in the same region having the same attributes is known as 3D segmentation.Segmentation is challenging with point cloud data due to substantial redundancy,fluctuating sample density and lack of apparent organization.The research area has a wide range of robotics applications,including intelligent vehicles,autonomous mapping and navigation.A number of researchers have introduced various methodologies and algorithms.Deep learning has been successfully used to a spectrum of 2D vision domains as a prevailing A.I.methods.However,due to the specific problems of processing point clouds with deep neural networks,deep learning on point clouds is still in its initial stages.This study examines many strategies that have been presented to 3D instance and semantic segmentation and gives a complete assessment of current developments in deep learning-based 3D segmentation.In these approaches’benefits,draw backs,and design mechanisms are studied and addressed.This study evaluates the impact of various segmentation algorithms on competitiveness on various publicly accessible datasets,as well as the most often used pipelines,their advantages and limits,insightful findings and intriguing future research directions.
文摘3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.
基金supported by National High Technology R & D Program of China (Grant No. 2009AA12Z205)Key Project of National Natural Science Foundation of China (Grant No. 40730527)National Natural Science Foundation of China (Grant No. 41001224)
文摘We propose a new Geographic Information System (GIS) three-dimensional (3D) data model based on conformal geometric algebra (CGA). In this approach, geographic objects of different dimensions are mapped to the corresponding basic elements (blades) in Clifford algebra, and the expressions of multi-dimensional objects are unified without losing their geometric meaning. Geometric and topologic computations are also processed in a clear and coordinates-free way. Under the CGA framework, basic geometrics are constructed and expressed by the inner and outer operators. This expression combined geometrics of different dimensions and metric relations. We present the structure of the framework, data structure design, and the data storage, editing and updating mechanisms of the proposed 3D GIS data model. 3D GIS geometric and topological analyses are performed by CGA metric, geometric and topological operators using an object-oriented approach. Demonstrations with 3D residence district data suggest that our 3D data model expresses effectively geometric objects in different dimensions, which supports computation of both geometric and topological relations. The clear and effective expression and computation structure has the potential to support complex 3D GIS analysis, and spatio-temporal analysis.
基金supported by the National Natural Science Foundation of China(Nos.41171355and41002120)
文摘A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies.
基金supported by the National Natural Science Foundation of China(Grant No.41271196)the Key Project of the 12th Five-year Plan,Chinese Academy of Sciences(Grant No.KZZD-EW-07-02-003)
文摘In the face of complicated, diversified three-dimensional world, the existing 3D GIS data models suffer from certain issues such as data incompatibility, insufficiency in data representation and representation types, among others. It is often hard to meet the requirements of multiple application purposes(users) related to GIS spatial data management and data query and analysis, especially in the case of massive spatial objects. In this study, according to the habits of human thinking and recognition, discrete expressions(such as discrete curved surface(DCS), and discrete body(DB)) were integrated and two novel representation types(including function structure and mapping structure) were put forward. A flexible and extensible ubiquitous knowledgeable data representation model(UKRM) was then constructed, in which structurally heterogeneous multiple expressions(including boundary representation(B-rep), constructive solid geometry(CSG), functional/parameter representation, etc.) were normalized. GIS's ability in representing the massive, complicated and diversified 3D world was thus greatly enhanced. In addition, data reuse was realized, and the bridge linking static GIS to dynamic GIS was built up. Primary experimental results illustrated that UKRM was overwhelmingly superior to the current data models(e.g. IFC, City GML) in describing both regular and irregular spatial objects.
基金partly supported by the JSPS Grant-in-Aid for Scientific Research #17300032
文摘Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.
文摘Creating and rendering intermediate geometric primitives is one of the approaches to visualize data sets in 3D space. Some algorithms have been developed to construct isosurface from uniformly distributed 3D data sets. These algorithms assume that the function value varies linearly along edges of each cell. But to irregular 3D data sets, this assumption is inapplicable. Moreover, the depth sorting of cells is more complicated for irregular data sets, which is indispensable for generating isosurface images or semitransparent isosurface images, if Z-buffer method is not adopted.In this paper, isosurface models based on the assumption that the function value has nonlinear distribution within a tetrahedroll are proposed. The depth sorting algorithm and data structures are developed for the irregular data sets in which cells may be subdivided into tetrahedra. The implementation issues of this algorithm are discussed and experimental results are shown to illustrate potentials of this technique.
文摘E lement- partition- based methods for visualization of 3D unstructured grid data are presented. First, partition schemes for common elements, including curvilinear tetrahedra, pentahedra, hexahedra, etc., are given, so that complex elements can be divided into several rectilinear tetrahedra, and the visualization processes can be simplified.Then, a slice method for cloud map and an iso-surface method based on the partition schemes are described.
基金supported by Australian Research Council(Grant No.DE220100094).
文摘Legal boundaries are used for delineating the spatial extent of ownership property’s spaces.In underground environments,these boundaries are defined by referencing physical objects,surveying measurements,or projections.However,there is a gap in connecting and managing these boundaries and underground legal spaces,due to a lack of data model.A 3D data model supporting underground land administration(ULA)should define and model these boundaries and the relationships between them and underground ownership spaces.Prominent 3D data models can be enriched to model underground legal boundaries.This research aims to propose a new taxonomy of underground legal boundaries and model them by extending CityGML,which is a widely used 3D data model in the geospatial science domain.We developed,implemented,and tested the model for different types of underground legal boundaries.The implemented prototype showcased the potential benefits of CityGML for managing underground legal boundaries in 3D.The proposed 3D underground model can be used to address current challenges associated with communicating and managing legal boundaries in underground environments.While this data model was specifically developed for Victoria,Australia,the proposed model and approach can be used and replicated in other jurisdictions by adjusting the data requirements for underground legal boundaries.