期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing 被引量:31
1
作者 E.Ghazvinian M.S.Diederichs R.Quey 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期506-521,共16页
A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in pol... A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Numerical modelling 3d Voronoi tessellation discrete element method Grain-based model Crack damage thresholds Fabric-guided micro-fracturing Anisotropy
下载PDF
Inconsistent effect of dynamic load waveform on macro-and micro-scale responses of ballast bed characterized in individual cycle:a numerical study 被引量:2
2
作者 Longlong Fu Yuexiao Zheng +1 位作者 Yongjia Qiu Shunhua Zhou 《Railway Engineering Science》 2023年第4期370-380,共11页
Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,... Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,such as deformation or stiffness,while the consistency of particle scale characteristics under two loading patterns is rarely examined,which is insufficient to well-understand and use the load simplification.In this study,a previous laboratory model test of ballast bed under cyclic load is rebuilt using 3D discrete element method(DEM),which is validated by dynamic responses monitored by high-resolution sensors.Then,train load having the same magnitude and amplitude as the cyclic load is applied in the numerical model to obtain the statistical characteristics of inter-particle contact force and particle movements in ballast bed.The results show that particle scale responses under two loading patterns could have quite deviation,even when macro-scale responses of ballast bed under two loading patterns are very close.This inconsistency indicates that the application scale of the DEM model should not exceed the validation scale.Moreover,it is important to examine multiscale responses to validate the effectiveness of load simplification. 展开更多
关键词 Railway ballast Particle movements Contact distribution Waveform sensitivity 3d discrete element method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部