Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part ...Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions' observation.展开更多
Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to...Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.展开更多
The main objective of this paper is to construct a static model that compress the uncertainties of the stochastic distribution of the reservoir properties of the Bahariya Formation in Heba field,at the northeastern po...The main objective of this paper is to construct a static model that compress the uncertainties of the stochastic distribution of the reservoir properties of the Bahariya Formation in Heba field,at the northeastern portion of the Western Desert.This model has been constructed through the integration of the interpretations of the eighteen 2D seismic sections and the analysis of well logs data for four wells(HEBA 300X,E.BAH-E-1X,E.BAH-D-1X,and HEBA 10X)drilled in the study area.This set of data was implemented in a harmonic workflow.Structural framework was the first step created on the basis of the seismic and well log interpretations.Model zonation was mainly managed by the marine flooding events took place during the Cenomanian period.The trapping faults position uncertainty has been compressed through the tying of the seismic profiles with the identified fault cuts in the well data.Effective porosity spectrum was broke up into three reservoir qualities.The results showed heterogeneous facies qualities for oil production in specific five zones in the topmost part of the Bahariya Formation.The effective porosity model was generated stochastically considering the normal distribution for each reservoir quality.Water saturation was distributed by two methods;1)Sequential Gaussian Simulation that was co-simulated by porosity model.2)Log-based saturation height function for each reservoir quality.This methodology provided as accurate as possible estimates for the volume calculation by quantifying the sensitivity of the important parameters such as oil contact.Additionally,the model was prepared to be used as a front end for dynamic simulation.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
Characteristics of electric field from a coupled mode inside an optical fiber under perturbation by three-dimensional(3D)printed long-period fiber grating(LPFG)device have been observed in this work by the experiment ...Characteristics of electric field from a coupled mode inside an optical fiber under perturbation by three-dimensional(3D)printed long-period fiber grating(LPFG)device have been observed in this work by the experiment and simulation.The various periodic index differences referring to the weights of perturbation by 3D printed LPFG device are applied on the single-mode fiber.The experimental results show that the resonant wavelength shift is a linear function of the grating period with the maximum coefficient of determination R2 of 0.9995.Some of resonant wavelengths are chosen to run simulations to investigate the electric field distribution.The scattering direction of the electric field states the magnitude of leaking optical power when the light transmits through the grating region applied to the single-mode fiber.Both the experimental and simulation results demonstrate that our proposed scheme can usefully be applied to selective tunable filters,intruder sensors,etc.展开更多
文摘Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions' observation.
基金supported by the Key Project Fund of the Chinese Academy of Sciences under grant number (kzcx2-yw-203-01)the Major State Basic Research Development Program of China(973 Program,Grant No.2007CB41170404)
文摘Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.
文摘The main objective of this paper is to construct a static model that compress the uncertainties of the stochastic distribution of the reservoir properties of the Bahariya Formation in Heba field,at the northeastern portion of the Western Desert.This model has been constructed through the integration of the interpretations of the eighteen 2D seismic sections and the analysis of well logs data for four wells(HEBA 300X,E.BAH-E-1X,E.BAH-D-1X,and HEBA 10X)drilled in the study area.This set of data was implemented in a harmonic workflow.Structural framework was the first step created on the basis of the seismic and well log interpretations.Model zonation was mainly managed by the marine flooding events took place during the Cenomanian period.The trapping faults position uncertainty has been compressed through the tying of the seismic profiles with the identified fault cuts in the well data.Effective porosity spectrum was broke up into three reservoir qualities.The results showed heterogeneous facies qualities for oil production in specific five zones in the topmost part of the Bahariya Formation.The effective porosity model was generated stochastically considering the normal distribution for each reservoir quality.Water saturation was distributed by two methods;1)Sequential Gaussian Simulation that was co-simulated by porosity model.2)Log-based saturation height function for each reservoir quality.This methodology provided as accurate as possible estimates for the volume calculation by quantifying the sensitivity of the important parameters such as oil contact.Additionally,the model was prepared to be used as a front end for dynamic simulation.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.
文摘Characteristics of electric field from a coupled mode inside an optical fiber under perturbation by three-dimensional(3D)printed long-period fiber grating(LPFG)device have been observed in this work by the experiment and simulation.The various periodic index differences referring to the weights of perturbation by 3D printed LPFG device are applied on the single-mode fiber.The experimental results show that the resonant wavelength shift is a linear function of the grating period with the maximum coefficient of determination R2 of 0.9995.Some of resonant wavelengths are chosen to run simulations to investigate the electric field distribution.The scattering direction of the electric field states the magnitude of leaking optical power when the light transmits through the grating region applied to the single-mode fiber.Both the experimental and simulation results demonstrate that our proposed scheme can usefully be applied to selective tunable filters,intruder sensors,etc.