The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept o...In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept of the enriched shape functions is introduced into the continuum-based (CB) shell element. Due to the advantage of CB shell element, the shell thickness varia- tion and surface connection can be concerned during the deformation. The stress intensity factors of the crack in the CB shell element are calculated by using the 'equivalent domain integral' method for 3D arbitrary non-planar crack. The maximum en- ergy release rate is used as a propagation criterion. This method is proved able to capture arbitrary crack growth path in pipes which is independent of the element mesh. Numerical examples of different fracture patterns in pipes are presented here.展开更多
Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSW...Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSWI) are employed as interpolating functions to construct plate and shell elements for stability analysis and 3D elastic elements for static mechanics analysis.The main advantages of BSWI scaling functions are the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis.The performances of the present elements are demonstrated by typical numerical examples.展开更多
Three-dimensional concrete printing(3DCP)technology begins to be adopted into construction application worldwide.Recent studies have focused on producing a higher concrete quality and offering a user-friendly construc...Three-dimensional concrete printing(3DCP)technology begins to be adopted into construction application worldwide.Recent studies have focused on producing a higher concrete quality and offering a user-friendly construction process.Still,the 3DCP construction cost is unlikely to be lower than that of conventional construction,which is especially important for projects where the cost is sensitive.To broaden the 3DCP construction applications,reduction of the quantity of 3DCP material usage is needed.This work aims to perform structural analysis of several patterns of geometric textured 3DCP shell wall structures.21 different cantilevered textured patterns of 3DCP shell wall structures were architecturally designed and then subjected to structural analysis by a finite element method(FEM).The results indicated that by designing appropriate patterns,the structural performance to weight ratio could be improved up to 300%.The study therefore offers an innovative design process for constructing 3DCP housing and suggests preconstruction analysis methods for 3DCP shell wall structures.展开更多
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金supported by the National Natural Science Foundation of China (Grant No. 11011140335)
文摘In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept of the enriched shape functions is introduced into the continuum-based (CB) shell element. Due to the advantage of CB shell element, the shell thickness varia- tion and surface connection can be concerned during the deformation. The stress intensity factors of the crack in the CB shell element are calculated by using the 'equivalent domain integral' method for 3D arbitrary non-planar crack. The maximum en- ergy release rate is used as a propagation criterion. This method is proved able to capture arbitrary crack growth path in pipes which is independent of the element mesh. Numerical examples of different fracture patterns in pipes are presented here.
基金supported by the National Natural Science Foundation of China (No. 50805028)the Key Project of Chinese Ministry of Education (No. 210170)+1 种基金Guangxi key Technologies R & D Program of China (Nos. 1099022-1 and 0900705 003)supported in part by the Excellent Talents in Guangxi Higher Education Institutions of China
文摘Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSWI) are employed as interpolating functions to construct plate and shell elements for stability analysis and 3D elastic elements for static mechanics analysis.The main advantages of BSWI scaling functions are the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis.The performances of the present elements are demonstrated by typical numerical examples.
基金The study was financially supported by Multidisciplinary Research Grant,Faculty of Architecture,Chulalongkorn University and Thailand Science research and Innovation Fund Chulalongkorn University(No.SOC66250010).
文摘Three-dimensional concrete printing(3DCP)technology begins to be adopted into construction application worldwide.Recent studies have focused on producing a higher concrete quality and offering a user-friendly construction process.Still,the 3DCP construction cost is unlikely to be lower than that of conventional construction,which is especially important for projects where the cost is sensitive.To broaden the 3DCP construction applications,reduction of the quantity of 3DCP material usage is needed.This work aims to perform structural analysis of several patterns of geometric textured 3DCP shell wall structures.21 different cantilevered textured patterns of 3DCP shell wall structures were architecturally designed and then subjected to structural analysis by a finite element method(FEM).The results indicated that by designing appropriate patterns,the structural performance to weight ratio could be improved up to 300%.The study therefore offers an innovative design process for constructing 3DCP housing and suggests preconstruction analysis methods for 3DCP shell wall structures.