In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a...In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a digital micro-mirror device(DMD) is utilized to rapidly generate structured images at the focal plane in synchronization with the axial scanning unit. The scanning characteristics of the ETL are investigated theoretically and experimentally. Imaging experiments on pollen samples are performed to verify the optical cross-sectioning and fast axial scanning capabilities. The results show that our system can perform fast axial scanning and threedimensional(3D) imaging when paired with a high-speed camera, presenting an economic solution for advanced biological imaging applications.展开更多
Measurement of light distribution in biological tissue contributes to selecting strategy and optimizing dose for biomedical application. In this letter, a photoacoustic method combined with Monte Carlo simulation was ...Measurement of light distribution in biological tissue contributes to selecting strategy and optimizing dose for biomedical application. In this letter, a photoacoustic method combined with Monte Carlo simulation was used to estimate the three-dimensional light distribution in biological tissue. The light distribution was produced by a cylindrical diffuser which interposed into tissues. The light profiles obtained by the method were compared to those detected by photo diodes. The experimental results demonstrate the feasibility of this method. The approach can play a significant role for photo-dosimetry in biomedical phototherapy.展开更多
Depth image based rendering (DIBR) is an effective approach for virtual view synthesis in free viewpoint television and 3D video.One of the important steps in DIBR is filling the holes caused by disoeclusion regions...Depth image based rendering (DIBR) is an effective approach for virtual view synthesis in free viewpoint television and 3D video.One of the important steps in DIBR is filling the holes caused by disoeclusion regions and wrong depth values.Most of the existing hole-filling methods work well in areas of low spatial activity but fail to obtain satisfactory results in high spatial activity regions.In this paper,we combine the depth based hole-filling and the adaptive recursive interpolation algorithm which is capable of handling edges passing through the missing areas.Accoring to the experimental results,we confirm that the depth based adaptive recursive interpolation algorithm can provide better rendering quality objectively and subjectively.展开更多
Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate...Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.展开更多
目的基于深度图的绘制(DIBR)是一种新型的虚拟视点生成技术,在诸多方面得到了广泛的应用。然而,该技术还不能满足实时性的绘制需求。为了在保证绘制质量不下降的前提下,尽可能地提高绘制速度,提出了一种高效的3D-Warping(3维坐标变换)...目的基于深度图的绘制(DIBR)是一种新型的虚拟视点生成技术,在诸多方面得到了广泛的应用。然而,该技术还不能满足实时性的绘制需求。为了在保证绘制质量不下降的前提下,尽可能地提高绘制速度,提出了一种高效的3D-Warping(3维坐标变换)算法。方法主要在以下3个方面进行了改进:1)引入了深度—视差映射表技术,避免了重复地进行视差求取操作。2)对深度平坦的像素块进行基于块的3D-Warping,减少了映射的次数。对深度非平坦像素块中的像素点采取传统的基于像素点的3D-Warping,保证了映射的准确性。3)针对两种不同的3D-Warping方式,分别提出了相应的插值算法。在水平方向上,改进的像素插值算法对紧邻插值和Splatting(散射)插值算法进行了折中,只在映射像素点与待插值像素点很近的情况下才进行紧邻插值,否则进行Splatting插值;在深度方向上,它对Z-Buffer(深度缓存)技术进行了改进,舍弃了与前景物体太远的映射像素点,而对其他映射像素点按深度值进行加权操作。结果实验结果表明,与标准绘制方案的整像素精度相比,绘制时间平均节省了72.05%;与标准绘制方案的半像素精度相比,PSNR平均提高了0.355 d B,SSIM平均提高了0.001 15。结论改进算法非常适用于水平设置相机系统的DIBR技术中的整像素精度绘制,对包含大量深度平坦区域的视频序列效果明显,不但能够提高绘制的速度,而且可以有效地改善绘制的客观质量。展开更多
基金supported by the National Natural Science Foundation of China(NSFC),General Program(No.51375415)the Development of a Flexure-based Optical Scanning System and a Multimodal Nonlinear Endomicroscope for in vivo Biological Studiesthe HKSAR Research Grants Council(RGC)General Research Fund(CUHK 14202815)
文摘In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a digital micro-mirror device(DMD) is utilized to rapidly generate structured images at the focal plane in synchronization with the axial scanning unit. The scanning characteristics of the ETL are investigated theoretically and experimentally. Imaging experiments on pollen samples are performed to verify the optical cross-sectioning and fast axial scanning capabilities. The results show that our system can perform fast axial scanning and threedimensional(3D) imaging when paired with a high-speed camera, presenting an economic solution for advanced biological imaging applications.
基金supported by the National Natural Science Foundation of China(No.61178089/81201124)in part by the Natural Science Foundation of Fujian Province(No.2011Y0019)
文摘Measurement of light distribution in biological tissue contributes to selecting strategy and optimizing dose for biomedical application. In this letter, a photoacoustic method combined with Monte Carlo simulation was used to estimate the three-dimensional light distribution in biological tissue. The light distribution was produced by a cylindrical diffuser which interposed into tissues. The light profiles obtained by the method were compared to those detected by photo diodes. The experimental results demonstrate the feasibility of this method. The approach can play a significant role for photo-dosimetry in biomedical phototherapy.
基金The MSIP(Ministry of Science,ICT & Future Planning),Korea,under the ITRC(Information Technology Research Center)support program(NIPA-2013-H0301-13-2006)supervised by the NIPA(National IT Industry Promotion Agency)
文摘Depth image based rendering (DIBR) is an effective approach for virtual view synthesis in free viewpoint television and 3D video.One of the important steps in DIBR is filling the holes caused by disoeclusion regions and wrong depth values.Most of the existing hole-filling methods work well in areas of low spatial activity but fail to obtain satisfactory results in high spatial activity regions.In this paper,we combine the depth based hole-filling and the adaptive recursive interpolation algorithm which is capable of handling edges passing through the missing areas.Accoring to the experimental results,we confirm that the depth based adaptive recursive interpolation algorithm can provide better rendering quality objectively and subjectively.
基金supported by the National Natural Science Foundation of China[Grant No.41771479]the National High-Resolution Earth Observation System(the Civil Part)[Grant No.50-H31D01-0508-13/15]the Japan Society for the Promotion of Science[Grant No.22H03573].
文摘Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.
文摘目的基于深度图的绘制(DIBR)是一种新型的虚拟视点生成技术,在诸多方面得到了广泛的应用。然而,该技术还不能满足实时性的绘制需求。为了在保证绘制质量不下降的前提下,尽可能地提高绘制速度,提出了一种高效的3D-Warping(3维坐标变换)算法。方法主要在以下3个方面进行了改进:1)引入了深度—视差映射表技术,避免了重复地进行视差求取操作。2)对深度平坦的像素块进行基于块的3D-Warping,减少了映射的次数。对深度非平坦像素块中的像素点采取传统的基于像素点的3D-Warping,保证了映射的准确性。3)针对两种不同的3D-Warping方式,分别提出了相应的插值算法。在水平方向上,改进的像素插值算法对紧邻插值和Splatting(散射)插值算法进行了折中,只在映射像素点与待插值像素点很近的情况下才进行紧邻插值,否则进行Splatting插值;在深度方向上,它对Z-Buffer(深度缓存)技术进行了改进,舍弃了与前景物体太远的映射像素点,而对其他映射像素点按深度值进行加权操作。结果实验结果表明,与标准绘制方案的整像素精度相比,绘制时间平均节省了72.05%;与标准绘制方案的半像素精度相比,PSNR平均提高了0.355 d B,SSIM平均提高了0.001 15。结论改进算法非常适用于水平设置相机系统的DIBR技术中的整像素精度绘制,对包含大量深度平坦区域的视频序列效果明显,不但能够提高绘制的速度,而且可以有效地改善绘制的客观质量。