期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Application of Opening and Closing Morphology in Deep Learning-Based Brain Image Registration 被引量:1
1
作者 Yue Yang Shiyu Liu +4 位作者 Shunbo Hu Lintao Zhang Jitao Li Meng Li Fuchun Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期609-618,共10页
In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant fo... In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant for each label,which leads to the gradient variation con-centrating on the boundary.Thus,the dense deformation field(DDF)is gathered on the boundary and there even appears folding phenomenon.In order to fully leverage the label information,the morphological opening and closing information maps are introduced to enlarge the non-zero gradi-ent regions and improve the accuracy of DDF estimation.The opening information maps supervise the registration model to focus on smaller,narrow brain regions.The closing information maps supervise the registration model to pay more attention to the complex boundary region.Then,opening and closing morphology networks(OC_Net)are designed to automatically generate open-ing and closing information maps to realize the end-to-end training process.Finally,a new registra-tion architecture,VM_(seg+oc),is proposed by combining OC_Net and VoxelMorph.Experimental results show that the registration accuracy of VM_(seg+oc) is significantly improved on LPBA40 and OASIS1 datasets.Especially,VM_(seg+oc) can well improve registration accuracy in smaller brain regions and narrow regions. 展开更多
关键词 three dimensional(3d)medical image registration deep learning opening operation closing operation MORPHOLOGY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部