Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivit...Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.展开更多
Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform a...Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs.展开更多
The strategy of combining highly conductive frameworks with abundant active sites is desirable in the preparation of alternative catalysts to commercial Pt/C for the oxygen reduction reaction (ORR). In this study, N...The strategy of combining highly conductive frameworks with abundant active sites is desirable in the preparation of alternative catalysts to commercial Pt/C for the oxygen reduction reaction (ORR). In this study, N-doped graphene (NG) and carbon nanotubes (CNT) were grown in-situ on Co-containing carbon nanofibers (CNF) to form three-dimensional (3D) interconnected networks. The NG and CNT bound the interlaced CNF together, facilitating electron transfer and providing additional active sites. The 3D interconnected fiber networks exhibited excellent ORR catalytic behavior with an onset potential of 0.924 V (vs. reversible hydrogen electrode) and a higher current density than Pt/C beyond 0.720 V. In addition, the hybrid system exhibited superior stability and methanol tolerance to Pt/C in alkaline media. This method can be extended to the design of other 3D interconnected network architectures for energy storage and conversion applications.展开更多
As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity ...As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity (~ 670 mAh·g--1). However, the low electrical conductivity of MoS2 and its dramatic volume change during charge/discharge lead to severe capacity degradation and poor cycling stability. In this work, we developed a facile, scalable, and effective synthesis method to embed nanosized MoS2 into a thin film of three-dimensional (3D)-interconnected carbon nanofibers (CNFs), producing a MoS2/CNFs film. The free-standing MoS2/CNFs thin film can be used as anode for NIBs without additional binders or carbon black. The MoS2/CNFs electrode exhibits a high reversible capacity of 260 mAh·g^-1, with an extremely low capacity loss of 0.05 mAh·g^-1 per cycle after 2,600 cycles at a current density of 1 A·g^-1. This enhanced sodium storage performance is attributed to the synergistic effect and structural advantages achieved by embedding MoS2 in the 3D-interconnected carbon matrix.展开更多
Solar-driven photoelectrochemical(PEC) water splitting is a promising technology for sustainable hydrogen production, which relies on the development of efficient and stable photoanodes for water oxidation reaction. T...Solar-driven photoelectrochemical(PEC) water splitting is a promising technology for sustainable hydrogen production, which relies on the development of efficient and stable photoanodes for water oxidation reaction. The thickness and microstructure of semiconductor films are generally crucial to their PEC properties. Herein, three-dimensional(3D) interconnected nanoporous Ta3N5 film photoanodes with controlled thickness were successfully fabricated via galvanostatic anodization and NH3 nitridation. The porous Ta3N5 nanoarchitectures(NAs) of 900 nm in thickness showed the highest PEC performance due to the optimal lightharvesting and charge separation. Compared with the holeinduced photocorrosion, the electrochemical oxidation at high anodic potentials resulted in severer performance degradation of Ta3N5. Although the surface oxide layer on deteriorated Ta3N5 photoanodes could be removed by NH3 re-treatment,the PEC performance was only partially recovered. As an alternative, anchoring a dual-layer Co(OH)x/Co OOH co-catalyst shell on the porous Ta3N5 NAs demonstrated substantially enhanced PEC performance and stability. Overall, this work provides reference to controllably fabricate 3D nanoporous Ta3N5-based photoanodes for efficient and stable PEC water splitting via optimizing the light absorption, hole extraction,charge separation and utilization.展开更多
Three-dimensional (3D) interconnected porous architectures are expected to perform well in photoelectrochemical (PEC) water splitting due to their high specific surface area as well as favourable porous properties...Three-dimensional (3D) interconnected porous architectures are expected to perform well in photoelectrochemical (PEC) water splitting due to their high specific surface area as well as favourable porous properties and interconnections. In this work, we demonstrated the facile fabrication of 3D interconnected nanoporous N-doped TiO2 (N-TiO2 network) by annealing the anodized 3D interconnected nanoporous TiO2 (TiO2 network) in ammonia atmosphere. The obtained N-TiO2 network exhibited broadened light absorption, and abundant, interconnected pores for improving charge separation, which was supported by the reduced charge transfer resistance. With these merits, a remarkably high photocurrent density at 1.23 V vs. reversible hydrogen electrode (RHE) was realized for the N-TiO2 network without any co-catalysts or sacrificial reagents, and the photostability can be assured after long term illumination. In view of its simplicity and efficiency, this structure promises for perspective PEC applications.展开更多
基金supported by the Natural Science Foundation of China(91963202 and 52072372)the Key Research Program of Frontier Sciences(CAS,Grant,QYZDJ-SSW-SLH046)the CAS/SAFEA International Partnership Program for Creative Research Teams,and the Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(YZJ ZX202018)
文摘Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.
基金This work is financially supported by the National Natural Science Foundation of China(Grant Nos.52072137,51802105).
文摘Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs.
基金The work was financially supported by the National Natural Science Foundation of China (Nos. 51203182 and 51173202), Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201312), Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology) (No. 1210908-01-K), Research Project of NUDT (No. JC13-01-05), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and Aid Program for Innovative Group of National University of Defense Technology.
文摘The strategy of combining highly conductive frameworks with abundant active sites is desirable in the preparation of alternative catalysts to commercial Pt/C for the oxygen reduction reaction (ORR). In this study, N-doped graphene (NG) and carbon nanotubes (CNT) were grown in-situ on Co-containing carbon nanofibers (CNF) to form three-dimensional (3D) interconnected networks. The NG and CNT bound the interlaced CNF together, facilitating electron transfer and providing additional active sites. The 3D interconnected fiber networks exhibited excellent ORR catalytic behavior with an onset potential of 0.924 V (vs. reversible hydrogen electrode) and a higher current density than Pt/C beyond 0.720 V. In addition, the hybrid system exhibited superior stability and methanol tolerance to Pt/C in alkaline media. This method can be extended to the design of other 3D interconnected network architectures for energy storage and conversion applications.
基金This work was supported by the National Key Research and Development Program of China (No. 2016YFB0100305), the National Natural Science Foundation of China (Nos. 21373195 and 51622210), the Fundamental Research Funds for the Central Universities (No. WK3430000004), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity (~ 670 mAh·g--1). However, the low electrical conductivity of MoS2 and its dramatic volume change during charge/discharge lead to severe capacity degradation and poor cycling stability. In this work, we developed a facile, scalable, and effective synthesis method to embed nanosized MoS2 into a thin film of three-dimensional (3D)-interconnected carbon nanofibers (CNFs), producing a MoS2/CNFs film. The free-standing MoS2/CNFs thin film can be used as anode for NIBs without additional binders or carbon black. The MoS2/CNFs electrode exhibits a high reversible capacity of 260 mAh·g^-1, with an extremely low capacity loss of 0.05 mAh·g^-1 per cycle after 2,600 cycles at a current density of 1 A·g^-1. This enhanced sodium storage performance is attributed to the synergistic effect and structural advantages achieved by embedding MoS2 in the 3D-interconnected carbon matrix.
基金financially supported by the National Natural Science Foundation of China (51774145,51872317 and 21835007)China Postdoctoral Science Foundation (2019M661644)China Scholarship Council (CSC) for financial support。
文摘Solar-driven photoelectrochemical(PEC) water splitting is a promising technology for sustainable hydrogen production, which relies on the development of efficient and stable photoanodes for water oxidation reaction. The thickness and microstructure of semiconductor films are generally crucial to their PEC properties. Herein, three-dimensional(3D) interconnected nanoporous Ta3N5 film photoanodes with controlled thickness were successfully fabricated via galvanostatic anodization and NH3 nitridation. The porous Ta3N5 nanoarchitectures(NAs) of 900 nm in thickness showed the highest PEC performance due to the optimal lightharvesting and charge separation. Compared with the holeinduced photocorrosion, the electrochemical oxidation at high anodic potentials resulted in severer performance degradation of Ta3N5. Although the surface oxide layer on deteriorated Ta3N5 photoanodes could be removed by NH3 re-treatment,the PEC performance was only partially recovered. As an alternative, anchoring a dual-layer Co(OH)x/Co OOH co-catalyst shell on the porous Ta3N5 NAs demonstrated substantially enhanced PEC performance and stability. Overall, this work provides reference to controllably fabricate 3D nanoporous Ta3N5-based photoanodes for efficient and stable PEC water splitting via optimizing the light absorption, hole extraction,charge separation and utilization.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51503014 and 51501008)the State Key Laboratory for Advanced Metals and Materials(No.2016Z-03)
文摘Three-dimensional (3D) interconnected porous architectures are expected to perform well in photoelectrochemical (PEC) water splitting due to their high specific surface area as well as favourable porous properties and interconnections. In this work, we demonstrated the facile fabrication of 3D interconnected nanoporous N-doped TiO2 (N-TiO2 network) by annealing the anodized 3D interconnected nanoporous TiO2 (TiO2 network) in ammonia atmosphere. The obtained N-TiO2 network exhibited broadened light absorption, and abundant, interconnected pores for improving charge separation, which was supported by the reduced charge transfer resistance. With these merits, a remarkably high photocurrent density at 1.23 V vs. reversible hydrogen electrode (RHE) was realized for the N-TiO2 network without any co-catalysts or sacrificial reagents, and the photostability can be assured after long term illumination. In view of its simplicity and efficiency, this structure promises for perspective PEC applications.