期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Topology optimization of 3D structures with design-dependent loads 被引量:1
1
作者 Hui Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期767-775,共9页
Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A bou... Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A boundary search scheme is proposed for 3D problems, by means of which the load surface can be identified effectively and efficiently, and the difficulties arising in other approaches can be overcome. The load surfaces are made up of the boundaries of finite elements and the loads can be directly applied to corresponding element nodes, which leads to great convenience in the application of this method. Finally, the effectiveness and efficiency of the proposed method is validated by several numerical examples. 展开更多
关键词 Design-dependent loads Topology optimization 3d structures - Load surface Pressure loading
下载PDF
A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone 被引量:2
2
作者 Lixia Fan Shaopeng Pei +1 位作者 X Lucas Lu Liyun Wang 《Bone Research》 SCIE CAS CSCD 2016年第3期154-163,共10页
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching... The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies. 展开更多
关键词 A multiscale 3d finite element analysis of fluid/solute transport in mechanically loaded bone FIGURE
下载PDF
Approaches for a 3D assessment of pavement evenness data based on 3D vehicle models 被引量:3
3
作者 Andreas Ueckermann Markus Oeser 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第2期68-80,共13页
Pavements are 3D in their shape. They can be captured in three dimensions by modern road mapping equipment which allows for the assessment of pavement evenness in a more holistic way as opposed to current practice whi... Pavements are 3D in their shape. They can be captured in three dimensions by modern road mapping equipment which allows for the assessment of pavement evenness in a more holistic way as opposed to current practice which divides into longitudinal and transversal evenness. It makes sense to use 3D vehicle models to simulate the effects of 3D surface data on certain functional criteria like pavement loading, cargo loading and driving comfort. In order to evaluate the three criteria mentioned two vehicle models have been created: a passenger car used to assess driving comfort and a truck-semitrailer submodel used to assess pavement and cargo loading. The vehicle models and their application to 3D surface data are presented. The results are well in line with existing single-track (planar) models. Their advantage over existing 1D/2D models is demonstrated by the example of driving comfort evaluation. Existing "geometric" limit values for the assessment of longi- tudinal evenness in terms of the power spectral density could be used to establish corre- sponding limit values for the dynamic response, i.e. driving comfort, pavement loading and cargo loading. The limit values are well in line with existing limit values based on planar vehicle models. They can be used as guidelines for the proposal of future limit values. The investigations show that the use of 3D vehicle models is an appropriate and meaningful way of assessing 3D evenness data gathered by modern road mapping systems. 展开更多
关键词 Pavement evenness Assessment 3d vehicle model loading Acceleration
原文传递
Establishment of a Fast Quality Assurance Method for Three-dimensional Afterloading Treatment Plan
4
作者 JI Tian-long ZHAO Jing +1 位作者 SHEN Hao LI Guang 《Chinese Journal of Biomedical Engineering(English Edition)》 2019年第3期105-112,共8页
Objective:To study the correlation between tumor size,radiation source intensity,prescription dose,and source dwell time in afterloading treatment plan,and to establish a rapid quality control method for afterloading ... Objective:To study the correlation between tumor size,radiation source intensity,prescription dose,and source dwell time in afterloading treatment plan,and to establish a rapid quality control method for afterloading treatment plan.Methods:A total of 181 patients with gynecological tumor were enrolled in our hospital.A total of 84 patients were installed with three tubes of Fletcher'applicator,58 patients with single uterine tube and 39 patients with vaginal applicator.Each patient was scanned with CT before treatment,and the target area and organs were delineated by doctors.The treatment plan was optimized by IPSA.The planned source intensity,prescription dose,source residence time and tumor volume of each case were recorded and the CI,RV,and k value were calculated,The CI distribution characteristics and the relationship with RV value were analyzed.In addition,46 cases of gynecological tumor patients'afterloading plan used this method for quality control verification.Results:The CI of the three kinds of applicators was normal distribution.The average Ci of Fletcher applicator was 0.720±0.067,k=1394,r=0.894,the average CI of Fletcher applicator was 0.697±0.076,k=1428,r=0.940,the average CI of vaginal applicator was 0.742±0.067,k=1362,r=0.909.Conclusion:Using this method,we could quickly evaluate the target volume,radiation source intensity,prescription dose and treatment time,to determine the cause of deviation according to the feedback results,ensuring that the afterloading treatment plan can be implemented efficiently quickly,and accurately in accordance with the clinical requirements. 展开更多
关键词 BRACHYTHERAPY simulated annealing reverse plan rapid quality control three-dimensional(3d)loading
原文传递
Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery 被引量:13
5
作者 Benjamin Papandrea Xu Xu +8 位作者 Yuxi Xu Chih-Yen Chen Zhaoyang Lin Gongming Wang Yanzhu Luo Matthew Liu yu Huang Liqiang Mai Xiangfeng Duan 《Nano Research》 SCIE EI CAS CSCD 2016年第1期240-248,共9页
Lithium-sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile device... Lithium-sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium-sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene frame- work for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene-sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene-sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 969 mAh-g-1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications. 展开更多
关键词 energy storage graphene frameworkthree-dimensional(3d)-network high loading lithium sulfur battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部