The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the...The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the high complexity of time and less information about the 3D model. The research is extended and process card is treated as part of the 3D reconstruction. A set of process data is a superset of 2D engineering drawings set. The set comprises process drawings and process steps, and shows a sequencing and asymptotic course that a part is made from roughcast blank to final product. According to these characteristics, the object to be reconstructed is translated from the complicated engineering drawings into a series of much simpler process drawings. With the plentiful process information added for reconstruction, the disturbances such as irrelevant graph, symbol and label, etc. can be avoided. And more, the form change of both neighbor process drawings is so little that the engineering drawings interpretation has no difficulty; in addition, the abnormal solution and multi-solution can be avoided during reconstruction, and the problems of being applicable to more objects is solved ultimately. Therefore, the utility method for 3D reconstruction model will be possible. On the other hand, the feature information in process cards is provided for reconstruction model. Focusing on process cards, the feasibility and requirements of Working Procedure Model reconstruction is analyzed, and the method to apply and implement the Natural Language Understanding into the 3D reconstruction is studied. The method of asymptotic approximation product was proposed, by which a 3D process model can be constructed automatically and intelligently. The process model not only includes the information about parts characters, but also can deliver the information of design, process and engineering to the downstream applications.展开更多
Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is emp...Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.展开更多
This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model ...This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively. The cut model still maintains its correct topology structure. With these operations, tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.展开更多
BACKGROUND Duodenum-preserving pancreatic head resection(DPPHR)is the choice of surgery for benign or low-grade malignant tumors of the pancreatic head.Laparoscopic DPPHR(LDPPHR)procedure can be improved by preoperati...BACKGROUND Duodenum-preserving pancreatic head resection(DPPHR)is the choice of surgery for benign or low-grade malignant tumors of the pancreatic head.Laparoscopic DPPHR(LDPPHR)procedure can be improved by preoperative 3D model reconstruction and the use of intravenous indocyanine green fluorescent before surgery for real-time navigation with fluorescent display to guide the surgical dissection and prevention of from injury to vessels and biliary tract.CASE SUMMARY Here we report the successful short-and long-term outcomes after one year following LDPPHR for a 60-year lady who had an uneventful recovery and was discharged home one week after the surgery.CONCLUSION There was no bile leakage or pancreatic leakage or delayed gastric emptying.The histopathology report showed multiple cysts in the pancreatic head and localized pancreatic intraepithelial tumor lesions.The resected margin was free of tumor.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and ...<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.展开更多
目的探讨3D打印体外建模辅助微创治疗复杂骨盆骨折的临床疗效。方法选择2016年4月至2017年6月采用3D打印体外建模辅助治疗的18例复杂骨盆骨折病例,记录手术时间及术中出血量,术后通过X射线片、CT及Matta评分标准评估骨折复位情况,通过Ma...目的探讨3D打印体外建模辅助微创治疗复杂骨盆骨折的临床疗效。方法选择2016年4月至2017年6月采用3D打印体外建模辅助治疗的18例复杂骨盆骨折病例,记录手术时间及术中出血量,术后通过X射线片、CT及Matta评分标准评估骨折复位情况,通过Majeed功能评分评估功能恢复情况。结果手术时间80~160 min,平均(120±23.1) min;术中出血量75~160 m L,平均(113.6±29.1) m L;切口长度7~14 cm,平均(9.3±1.8) cm。18例患者均获随访12~24个月,平均15.8个月。根据Matta评分标准,骨折复位:优12例,良4例,可2例,优良率88.9%。术后6个月使用Majeed评分标准评定功能恢复情况,结果显示:优13例,良4例,可1例,优良率94.4%。所有患者随访期间无内固定松动、断裂等并发症发生。结论采用3D打印体外建模辅助治疗复杂骨盆骨折可使手术操作更加精准及微创,减少并发症的发生,有利于患者术后康复。展开更多
文摘The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the high complexity of time and less information about the 3D model. The research is extended and process card is treated as part of the 3D reconstruction. A set of process data is a superset of 2D engineering drawings set. The set comprises process drawings and process steps, and shows a sequencing and asymptotic course that a part is made from roughcast blank to final product. According to these characteristics, the object to be reconstructed is translated from the complicated engineering drawings into a series of much simpler process drawings. With the plentiful process information added for reconstruction, the disturbances such as irrelevant graph, symbol and label, etc. can be avoided. And more, the form change of both neighbor process drawings is so little that the engineering drawings interpretation has no difficulty; in addition, the abnormal solution and multi-solution can be avoided during reconstruction, and the problems of being applicable to more objects is solved ultimately. Therefore, the utility method for 3D reconstruction model will be possible. On the other hand, the feature information in process cards is provided for reconstruction model. Focusing on process cards, the feasibility and requirements of Working Procedure Model reconstruction is analyzed, and the method to apply and implement the Natural Language Understanding into the 3D reconstruction is studied. The method of asymptotic approximation product was proposed, by which a 3D process model can be constructed automatically and intelligently. The process model not only includes the information about parts characters, but also can deliver the information of design, process and engineering to the downstream applications.
基金Supported by National Natural Science Foundation of China(No.61272286)
文摘Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.
基金This research was supported by the National Nature Science Foundation of China under Grant No.60473024 the Nature Science Foundation of Zhejiang Province of China under Grant No.Y104341 and z105391.
文摘This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively. The cut model still maintains its correct topology structure. With these operations, tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.
文摘BACKGROUND Duodenum-preserving pancreatic head resection(DPPHR)is the choice of surgery for benign or low-grade malignant tumors of the pancreatic head.Laparoscopic DPPHR(LDPPHR)procedure can be improved by preoperative 3D model reconstruction and the use of intravenous indocyanine green fluorescent before surgery for real-time navigation with fluorescent display to guide the surgical dissection and prevention of from injury to vessels and biliary tract.CASE SUMMARY Here we report the successful short-and long-term outcomes after one year following LDPPHR for a 60-year lady who had an uneventful recovery and was discharged home one week after the surgery.CONCLUSION There was no bile leakage or pancreatic leakage or delayed gastric emptying.The histopathology report showed multiple cysts in the pancreatic head and localized pancreatic intraepithelial tumor lesions.The resected margin was free of tumor.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
文摘<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.
文摘目的探讨3D打印体外建模辅助微创治疗复杂骨盆骨折的临床疗效。方法选择2016年4月至2017年6月采用3D打印体外建模辅助治疗的18例复杂骨盆骨折病例,记录手术时间及术中出血量,术后通过X射线片、CT及Matta评分标准评估骨折复位情况,通过Majeed功能评分评估功能恢复情况。结果手术时间80~160 min,平均(120±23.1) min;术中出血量75~160 m L,平均(113.6±29.1) m L;切口长度7~14 cm,平均(9.3±1.8) cm。18例患者均获随访12~24个月,平均15.8个月。根据Matta评分标准,骨折复位:优12例,良4例,可2例,优良率88.9%。术后6个月使用Majeed评分标准评定功能恢复情况,结果显示:优13例,良4例,可1例,优良率94.4%。所有患者随访期间无内固定松动、断裂等并发症发生。结论采用3D打印体外建模辅助治疗复杂骨盆骨折可使手术操作更加精准及微创,减少并发症的发生,有利于患者术后康复。