期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D simulation of near-fault strong ground motion: comparison between surface rupture fault and buried fault 被引量:2
1
作者 刘启方 袁一凡 金星 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第4期337-344,共8页
In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element metho... In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BE the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤ 1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BE Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults. 展开更多
关键词 near fault surface rupture fault long period ground motion 3d simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部