期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Optimizing mechanical properties of HIPS fabricated with low-cost desktop 3D printers:investigating the impact of process parameters
1
作者 Jin-Ting Xu Guang-Wei Zhang Man-Man Chen 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第2期379-395,共17页
Recently,low-cost desktop three-dimensional(3D)printers,employing the fused deposition modeling(FDM)technique,have gained widespread popularity.However,most users cannot test the strength of printed parts,and little i... Recently,low-cost desktop three-dimensional(3D)printers,employing the fused deposition modeling(FDM)technique,have gained widespread popularity.However,most users cannot test the strength of printed parts,and little information is available about the mechanical properties of printed high-impact polystyrene(HIPS)parts using desktop 3D printers.In this study,the user-adjustable parameters of desktop 3D printers,such as crisscross raster orientation,layer thickness,and infill density,were tested.The experimental plans were designed using the Box-Behnken method,and tensile,3-point bending,and compression tests were carried out to determine the mechanical responses of the printed HIPS.The prediction models of the process parameters were regressed to produce the optimal combination of process parameters.The experimental results showcase that the crisscross raster orientation has significant effects on the flexural and compression strengths,but not on the tensile strength.With an increase in the layer thickness,the tensile,flexural,and compression strengths first decreased and then increased,reaching their minimum values at approximately 0.16 mm layer thickness.In addition,they all increased with an increase of infill density.It was demonstrated that when the raster orientation,layer thickness,and infill density were 13.08°/–76.92°,0.09 mm,and 80%,respectively,the comprehensive mechanical properties of the printed HIPS were optimal.Our results can help end-users of desktop 3D printers understand the effects of process parameters on the mechanical properties,and offer practical suggestions for setting proper printing parameters for fabricating HIPS parts. 展开更多
关键词 Desktop three-dimensional(3d)printers Fused deposition modeling(FDM) High-impact polystyrene(HIPS) Process parameters
原文传递
Structure Design of Underwater Micro Robot
2
作者 Md Shahriar Sujan Joy Howlader +1 位作者 Md Jahangir Alam Md Al Imran Tapu 《Modern Mechanical Engineering》 2024年第1期12-24,共13页
A submergible robot model has been presented, and for 3D printing measures, their parts have been modified enough. It has been shown in our design that using printable connectors—a few engines and weight arrangements... A submergible robot model has been presented, and for 3D printing measures, their parts have been modified enough. It has been shown in our design that using printable connectors—a few engines and weight arrangements can be carried out, permitting distinctive moving prospects. After presenting our configuration and delineating a bunch of potential structures, a helpful model dependent on open-source equipment and programming arrangements has been presented conditionally. The model can be effectively tried in a few makes-a plunge streams and lakes throughout the planet. The unwavering quality of the printed models can be strained distinctly in generally shallow waters. Nonetheless, we accept that their accessibility will inspire the overall population to construct and test submerged robots, subsequently accelerating the improvement of imaginative arrangements and applications. 展开更多
关键词 Submergible Robot THRUSTER ADAPTER Raspberry Pi 3d Printer Open Source Software
下载PDF
Experimental Research on the Fabrication of Modular Devices for Drilling Using PLA for Model Parts
3
作者 Diana Băilă Remigiusz Łabudzki +1 位作者 Igor Fodchuk Mirian Bonilla 《Open Journal of Applied Sciences》 2024年第10期2790-2800,共11页
The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model par... The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model parts. The model parts were 3D printed using FDM technology and the ZMorph 2.0 hybrid 3D printer. The accuracy of 3D printing of the model part influences the realization of modular devices. In recent years, technology has evolved a lot, and the need to have the most efficient manufacturing equipment has increased. This is the reason for the development of 3D printers using FDM technology for plastic parts. The software used by these 3D printers used in FDM technology is very sophisticated, as they allow the manufacture of very precise 3D prototypes, identical to the designed 3D model, through modern additive manufacturing techniques. The quality and mechanical strength of the prototypes obtained using 3D printers is very good. The materials used by the 3D printers manufactured by FDM are cheap and accessible. These 3D printers are used to make three-dimensional objects (gears, flanges, bearings, covers, casings, mechanisms, figurines, interior and exterior design elements, architectural models, medical models). 展开更多
关键词 Modular Device 3d Printer FDM-Fused Deposition Modeling Dimensional Accuracy Melting Temperature
下载PDF
Effects of Selected Printing Parameters on the Fire Properties of 3D-Printed Neat Polylactic Acid(PLA)and Wood/PLA Composites 被引量:1
4
作者 Nataša Knez Mirko Kariž +2 位作者 Friderik Knez Nadir Ayrilmis Manja Kitek Kuzman 《Journal of Renewable Materials》 SCIE EI 2021年第11期1883-1895,共13页
The effects of selected printing parameters on the fire properties of additively produced composites from neat polylactic acid(PLA)and wood/PLA filaments were investigated.The reaction to fire of the 3D-printed specim... The effects of selected printing parameters on the fire properties of additively produced composites from neat polylactic acid(PLA)and wood/PLA filaments were investigated.The reaction to fire of the 3D-printed specimens was tested according to the ISO 5660-1 cone calorimeter test method.The results showed that the properties of the specimens when exposed to fire were significantly affected by the incorporation of wood flour into the PLA filament.It was also interesting that PLA specimens had much better reactions to fire than the wood/PLA specimens.Time to ignition was found to be much longer in the 3D-printed PLA specimens.Although the maximal heat release rate was a little higher in the PLA than the wood/PLA specimens,the duration of HRR was longer for the wood/PLA specimens.The initial mass of the specimens was smaller in the wood/PLA composites,but during the radiant heat exposure the mass typically decreased slower than in the PLA specimens. 展开更多
关键词 Reaction to fire WOOD polylactic acid(PLA) FILAMENT 3d printer BIOCOMPOSITE
下载PDF
Parametric Design Used in the Creation of 3D Models with Weaving Characteristics 被引量:1
5
作者 Hui-Chin Chang 《Journal of Computer and Communications》 2021年第11期112-127,共16页
The art of weaving is an ancient and beautiful technique that never fades. Various weaving techniques and various totem patterns contain rich cultural connotations. The development of cultural and creative industries ... The art of weaving is an ancient and beautiful technique that never fades. Various weaving techniques and various totem patterns contain rich cultural connotations. The development of cultural and creative industries often uses existing environmental materials to deconstruct and use them in innovative ways to reinspire and present another style. With the rapid progress of computer-aided design technology, digital applications in the design practice has become an important element, and parametric design is the best popular design method in recent years. This paper is mainly in view of the weaving crafts in the traditional culture of the world occupies an important role, and the precious traditional weaving crafts gradually lost. Therefore, it is planned to construct a 3D model with knitting characteristics through a parametric design method, and print out the prototype through the 3D printing mechanism, that is, the traditional craftsmanship is integrated into the modern manufacturing process with innovative techniques, to show the new style of this weaving craft culture that is different from the past, so that it not only retain its inherent spirit, but also can promote this ideal of cultural creativity. 展开更多
关键词 Weaving Crafts Parametric Design GRASSHOPPER 3d Printer
下载PDF
A Rapid Generation Method of Character Doll with Rotatable Limbs Oriented to 3D Printer 被引量:2
6
作者 LI Lin CHU Xiao-li Nie Wenchao 《Computer Aided Drafting,Design and Manufacturing》 2014年第1期23-26,共4页
Currently, 3D printing of the character dolls is a very practical application for the average person. But the model of doll which can be obtained is static so the posture of the doll is single. On the other hand, the ... Currently, 3D printing of the character dolls is a very practical application for the average person. But the model of doll which can be obtained is static so the posture of the doll is single. On the other hand, the modification of the model is very difficult to non-professions. This paper proposes an rapid generation method of character doll with rotatable limbs, which is through adding the sphere joint to the doll's model automatically. After the model is segmented by drawing a line interactively, the sphere joint is created based on the segmentation boundary through entity modeling method. Lastly the two models of the doll and the joint are composited and printed. Some doll's model are tested on the FDM(Fused Deposition Modeling) 3D printer using this process. The results are more interesting and the efficiency has been greatly improved compared with modifying the model manually. 展开更多
关键词 3d Printer character doll sphere joint parametric modeling
下载PDF
The Effect of Consumption on the Appearance of Closers Implemented by 3D Printer Technology (FDM)
7
作者 Sanaa Abdullah Alsiyami Shadia Salah Salem 《Journal of Textile Science and Technology》 2022年第4期187-202,共16页
The shift towards sustainability in the fashion industry has become an urgent necessity and a national duty, where the life cycle of garments poses a negative impact on the environment, which increases strongly with t... The shift towards sustainability in the fashion industry has become an urgent necessity and a national duty, where the life cycle of garments poses a negative impact on the environment, which increases strongly with the huge increase in the daily consumption of garments and fast fashion. One of the most prominent solutions that have been proposed is to change the manufacturing system in a way that would help reduce costs, reduce supply and provide products that are more closely related to the individual customer need. Accessories such as (closers) are an important part of the fashion industry, and therefore, this study aimed to produce closers using (FDM) technology, which is one of the least expensive and most widespread 3D printing technologies. These closers are then tested in the laboratory according to AATCC standard specifications for garments and closers to ensure the applicability of this technology in the implementation of closers for designers and manufacturers in medium and small facilities. This study relied on the experimental exploratory approach, and the results proved the success of the proposed closers, as the implemented models passed the standard tests with distinction. 展开更多
关键词 3d Printer FDM Technology Fashion Manufacturing Closers AATCC Additive Manufacturing Sustainable Fashion
下载PDF
Mechanical characteristics of oil palm fiber reinforced thermoplastics as filament for fused deposition modeling(FDM)
8
作者 Mohd Nazri Ahmad Mohammad Khalid Wahid +3 位作者 Nurul Ain Maidin Mohd Hidayat Ab Rahman Mohd Hairizal Osman Izzati Fatin Alis@Elias 《Advances in Manufacturing》 SCIE CAS CSCD 2020年第1期72-81,共10页
Fibers are increasingly in demand for a wide range of polymer composite materials.This study^purpose was the development of oil palm fiber(OPF)mixed with the thermoplastic material acrylonitrile butadiene styrene(ABS)... Fibers are increasingly in demand for a wide range of polymer composite materials.This study^purpose was the development of oil palm fiber(OPF)mixed with the thermoplastic material acrylonitrile butadiene styrene(ABS)as a composite filament for fused deposition modeling(FDM).The mechanical properties of this composite filament were then analyzed.OPF is a fiber extracted from empty fruit bunches,which has proved to be an excellent raw material for biocomposites.The cellulose content of OPF is 43%-65%,and the lignin content is 13%-25%.The composite lilament consists of OPF(5%,mass fraction)in the ABS matrix.The fabrication procedure included alkalinizing,drying,and crushing the OPF to develop the composite.The OPF/ABS materials were prepared and completely blended to acquire a mix of 250 g of the material for the composition.Next,the FLD25 filament extrusion machine was used to form the OPF/ABS composite into a wire.This composite filament then was used in an FDM-based 3D printer to print the specimens.Finally,the printed specimens were tested for mechanical properties such as tensile and flexural strength.The results show that the presence of OPF had increased the tensile strength and modulus elasticity by approximately 1.9%and 1.05%,respectively.However,the flexural strength of the OPF/ABS composite had decreased by 90.6%compared with the virgin ABS.Lastly,the most significant outcome of the OPF/ABS composite was its suitability for printing using the FDM method. 展开更多
关键词 Natural fibers Oil palm fiber(OPF) Fused deposition modeling(FDM) 3d printer Composite filament
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部