In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experiment...In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.展开更多
In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems.In earlier works,the local Schu...In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems.In earlier works,the local Schur complements were computed exactly using a sparse direct solver.The robustness of the preconditioner comes at the price of this memory and time intensive computation that is the main bottleneck of the approach for tackling huge problems.In this work we investigate the use of sparse approximation of the dense local Schur complements.These approximations are computed using a partial incomplete LU factorization.Such a numerical calculation is the core of the multi-level incomplete factorization such as the one implemented in pARMS. The numerical and computing performance of the new numerical scheme is illustrated on a set of large 3D convection-diffusion problems;preliminary experiments on linear systems arising from structural mechanics are also reported.展开更多
文摘In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.
基金developed in the framework of the associated team PhyLeas(Study of parallel hybrid sparse linear solvers) funded by INRIA where the partners are INRIA,T.U.Brunswick and University of Minnesotasupported by the US Department of Energy under grant DE-FG-08ER25841 and by the Minnesota Supercomputer Institute.
文摘In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems.In earlier works,the local Schur complements were computed exactly using a sparse direct solver.The robustness of the preconditioner comes at the price of this memory and time intensive computation that is the main bottleneck of the approach for tackling huge problems.In this work we investigate the use of sparse approximation of the dense local Schur complements.These approximations are computed using a partial incomplete LU factorization.Such a numerical calculation is the core of the multi-level incomplete factorization such as the one implemented in pARMS. The numerical and computing performance of the new numerical scheme is illustrated on a set of large 3D convection-diffusion problems;preliminary experiments on linear systems arising from structural mechanics are also reported.