This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop ...This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop a long short-term memory(LSTM)network capable of assessing this impact.We conducted an extensive analysis involving 12 distinct infill patterns,collecting time-series data to examine their effects on the acceleration of the printer’s bed.The LSTM network was trained using acceleration data from the adaptive cubic infill pattern,while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy.This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model.Specifically,the LSTM model was devised to predict the acceleration of a fused deposition modeling(FDM)printer using data from the adaptive cubic infill pattern.Rigorous testing yielded a root mean square error(RMSE)of 0.007144,reflecting the model’s precision.Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern,resulting in an RMSE of 0.007328.Notably,the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network(RNN)in predicting machine acceleration data.The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.展开更多
Desktop 3D printers have revolutionized how designers and makers prototype and manufacture certain products.Highly popular fuse deposition modeling(FDM)desktop printers have enabled a shift to low-cost consumer goods ...Desktop 3D printers have revolutionized how designers and makers prototype and manufacture certain products.Highly popular fuse deposition modeling(FDM)desktop printers have enabled a shift to low-cost consumer goods markets,through reduced capital equipment investment and consumable material costs.However,with this drive to reduce costs,the computer numerical control(CNC)systems implemented in FDM printers are often compromised by poor accuracy and contouring errors.This condition is most critical as users begin to use 3D-printed components in load-bearing applications or to perform mechanical functions.Improved methods of low-cost 3D printer calibration are needed before their open-design potential can be realized in applications,including 3D-printed orthotics and prosthetics.This paper applies methodologies associated with high-precision CNC machining systems,namely,kinematic error modeling and compensation coupled with standardized test methods from ISO230-4,such as the ballbar for kinematic and dynamic error measurements,to examine the influence and feasibility for use on low-cost CNC/3D printing platforms.Recently,the U.S.Food and Drug Administration's"Technical considerations for additive manufactured medical devices"highlighted the need to develop standards specific to additive manufacturing in regulated manufacturing environments.This paper shows the benefits of the methods described within ISO230-4 for error assessment,alongside applying kinematic error modeling and compensation to the popular kinematic configuration of an Ultimaker 3D printer.A Renishaw ballbar QC10 is used to quantify the Ultimaker's errors and thereby populate the error model.This method quantifies machine errors and populates these in a mathematical model of the CNC system.Then,a post-processor can be used to compensate the printing code.Subsequently,the ballbar is used to demonstrate the dramatic impact of the error compensation model on the accuracy and contouring of the Ultimaker printer with 58%reduction in overall circularity error and 90%reduction in squareness error.展开更多
This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors ...This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.展开更多
Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satelli...Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satellite World 3D Digital Surface Model version 2.1 (ALOS W3D30), the Shuttle Radar Topography Mission Digital Elevation Model version 3.0 (SRTM30) and the Advanced Space borne Thermal Emission and Reflection Radiometer Global DEM version 2.0 (ASTER GDEM2) was statistically assessed using high accuracy GPS survey data. Root-Mean-Square errors of ~5.40 m, ~7.47 m and ~20.03 m were obtained for ALOS W3D30, SRTM30 and ASTER GDEM2 respectively. In further analyses, we discovered that ALOS W3D30 and SRTM30 were much more accurate in regions where the height intervals were within 201 m - 400 m and >801 m. ALOS W3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some earth and environmental applications in Nigeria. We recommend that this study should serve as a guide in the use of any of these DEMs for earth and environmental applications in Nigeria.展开更多
Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the lar...Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the large features close to horizontal,hanging over the void.The overhangs will make the manufactured model deviate from the design model,which will result in the performance of the manufactured model that cannot satisfy the design requirements.In this paper,we will propose a new finite element(FE)analysis model that includes the manufacturing errors by mimicking the AM layer by layer construction process.In such FE model,an overhang coefficient is introduced to each FE,which is defined by the support elements in the lower layer.By mimicking the AM process from the bottom layer to the top layer,all the FE properties are updated based on their overhang coefficients,which makes the computational model be able to predict the manufactured model with manufacturing errors.The proposed model can be used to predict the performance of the AM objects in the design stage,which will help the designers to improve their design by the simulation results.展开更多
In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkag...In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.展开更多
Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves....Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.展开更多
Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality te...Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.展开更多
This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to...This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to the kinematic model in which a point rotates around a spatial line in the machine coordinate system of the printer.The model considers the A-and C-axes as two spatial lines.It is a two-object optimization model including two aspects.One is that the sum of deviations between the measured and computed points should be small;the other is that the deviations should be uniformly distributed for every measured point.A comparison of the new optimization method with conventional error-compensation methods reveals that the former has higher location accuracy.Using the optimized AC axes,5-axis 3D printing paths are planned for some complex workpieces.Data analysis and printing samples show that the optimized AC axes satisfy 5-axes FDM printing requirements for nozzles with a diameter of 1.0 mm.展开更多
We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
This paper proposes an unequal error protection(UEP)coding method to improve the transmission performance of three-dimensional(3D)audio based on expanding window fountain(EWF).Different from other transmissions ...This paper proposes an unequal error protection(UEP)coding method to improve the transmission performance of three-dimensional(3D)audio based on expanding window fountain(EWF).Different from other transmissions with equal error protection(EEP)when transmitting the 3D audio objects.An approach of extracting the important audio object is presented,and more protection is given to more important audio object and comparatively less protection is given to the normal audio objects.Objective and subjective experiments have shown that the proposed UEP method achieves better performance than equal error protection method,while the bits error rates(BER)of the important audio object can decrease from 10^(–3) to 10^(–4),and the subjective quality of UEP is better than that of EEP by 14%.展开更多
文摘This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop a long short-term memory(LSTM)network capable of assessing this impact.We conducted an extensive analysis involving 12 distinct infill patterns,collecting time-series data to examine their effects on the acceleration of the printer’s bed.The LSTM network was trained using acceleration data from the adaptive cubic infill pattern,while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy.This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model.Specifically,the LSTM model was devised to predict the acceleration of a fused deposition modeling(FDM)printer using data from the adaptive cubic infill pattern.Rigorous testing yielded a root mean square error(RMSE)of 0.007144,reflecting the model’s precision.Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern,resulting in an RMSE of 0.007328.Notably,the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network(RNN)in predicting machine acceleration data.The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.
基金supported by Science Foundation Ireland through the I-Form Advanced Manufacturing Research Centre 16/RC/3872
文摘Desktop 3D printers have revolutionized how designers and makers prototype and manufacture certain products.Highly popular fuse deposition modeling(FDM)desktop printers have enabled a shift to low-cost consumer goods markets,through reduced capital equipment investment and consumable material costs.However,with this drive to reduce costs,the computer numerical control(CNC)systems implemented in FDM printers are often compromised by poor accuracy and contouring errors.This condition is most critical as users begin to use 3D-printed components in load-bearing applications or to perform mechanical functions.Improved methods of low-cost 3D printer calibration are needed before their open-design potential can be realized in applications,including 3D-printed orthotics and prosthetics.This paper applies methodologies associated with high-precision CNC machining systems,namely,kinematic error modeling and compensation coupled with standardized test methods from ISO230-4,such as the ballbar for kinematic and dynamic error measurements,to examine the influence and feasibility for use on low-cost CNC/3D printing platforms.Recently,the U.S.Food and Drug Administration's"Technical considerations for additive manufactured medical devices"highlighted the need to develop standards specific to additive manufacturing in regulated manufacturing environments.This paper shows the benefits of the methods described within ISO230-4 for error assessment,alongside applying kinematic error modeling and compensation to the popular kinematic configuration of an Ultimaker 3D printer.A Renishaw ballbar QC10 is used to quantify the Ultimaker's errors and thereby populate the error model.This method quantifies machine errors and populates these in a mathematical model of the CNC system.Then,a post-processor can be used to compensate the printing code.Subsequently,the ballbar is used to demonstrate the dramatic impact of the error compensation model on the accuracy and contouring of the Ultimaker printer with 58%reduction in overall circularity error and 90%reduction in squareness error.
文摘This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.
文摘Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satellite World 3D Digital Surface Model version 2.1 (ALOS W3D30), the Shuttle Radar Topography Mission Digital Elevation Model version 3.0 (SRTM30) and the Advanced Space borne Thermal Emission and Reflection Radiometer Global DEM version 2.0 (ASTER GDEM2) was statistically assessed using high accuracy GPS survey data. Root-Mean-Square errors of ~5.40 m, ~7.47 m and ~20.03 m were obtained for ALOS W3D30, SRTM30 and ASTER GDEM2 respectively. In further analyses, we discovered that ALOS W3D30 and SRTM30 were much more accurate in regions where the height intervals were within 201 m - 400 m and >801 m. ALOS W3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some earth and environmental applications in Nigeria. We recommend that this study should serve as a guide in the use of any of these DEMs for earth and environmental applications in Nigeria.
基金This work has been supported by National Natural Science Foundation of China(51705158)Guangdong Basic and Applied Basic Research Foundation(2019A1515011783)the Fundamental Research Funds for the Central Universities(2018MS45).
文摘Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the large features close to horizontal,hanging over the void.The overhangs will make the manufactured model deviate from the design model,which will result in the performance of the manufactured model that cannot satisfy the design requirements.In this paper,we will propose a new finite element(FE)analysis model that includes the manufacturing errors by mimicking the AM layer by layer construction process.In such FE model,an overhang coefficient is introduced to each FE,which is defined by the support elements in the lower layer.By mimicking the AM process from the bottom layer to the top layer,all the FE properties are updated based on their overhang coefficients,which makes the computational model be able to predict the manufactured model with manufacturing errors.The proposed model can be used to predict the performance of the AM objects in the design stage,which will help the designers to improve their design by the simulation results.
文摘In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.
基金Supported by the National Natural Science Foundation under Grant No.60572098
文摘Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.
文摘Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.
基金Supported by the National Natural Science Foundation of China(51975281,51705183).
文摘This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to the kinematic model in which a point rotates around a spatial line in the machine coordinate system of the printer.The model considers the A-and C-axes as two spatial lines.It is a two-object optimization model including two aspects.One is that the sum of deviations between the measured and computed points should be small;the other is that the deviations should be uniformly distributed for every measured point.A comparison of the new optimization method with conventional error-compensation methods reveals that the former has higher location accuracy.Using the optimized AC axes,5-axis 3D printing paths are planned for some complex workpieces.Data analysis and printing samples show that the optimized AC axes satisfy 5-axes FDM printing requirements for nozzles with a diameter of 1.0 mm.
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2015AA016306)the National Natural Science Foundation of China(61662010,61231015,61471271)+1 种基金Science and Technology Plan Projects of Shenzhen(ZDSYS2014050916575763)Science and Technology Foundation of Guizhou Province(LKS[2011]1)
文摘This paper proposes an unequal error protection(UEP)coding method to improve the transmission performance of three-dimensional(3D)audio based on expanding window fountain(EWF).Different from other transmissions with equal error protection(EEP)when transmitting the 3D audio objects.An approach of extracting the important audio object is presented,and more protection is given to more important audio object and comparatively less protection is given to the normal audio objects.Objective and subjective experiments have shown that the proposed UEP method achieves better performance than equal error protection method,while the bits error rates(BER)of the important audio object can decrease from 10^(–3) to 10^(–4),and the subjective quality of UEP is better than that of EEP by 14%.