Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D onli...Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D online tourism, Web3D online architecture, Web3D online education environment, Web3D online medical care, and Web3D online shopping are examples of these applications that leverage 3D rendering on the web. These applications have pushed the boundaries of traditional web applications that use text, sound, image, video, and 2D animation as their main communication media, and resorted to 3D virtual scenes as the main interaction object, enabling a user experience that delivers a strong sense of immersion. This paper approached the emerging Web3D applications that generate stronger impacts on people's lives through “real-time rendering technology”, which is the core technology of Web3D. This paper discusses all the major 3D graphics APIs of Web3D and the well-known Web3D engines at home and abroad and classify the real-time rendering frameworks of Web3D applications into different categories. Results Finally, this study analyzed the specific demand posed by different fields to Web3D applications by referring to the representative Web3D applications in each particular field. Conclusions Our survey results show that Web3D applications based on real-time rendering have in-depth sectors of society and even family, which is a trend that has influence on every line of industry.展开更多
To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the...To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.展开更多
This paper studies some programming techniques for low power rendering for 3 D graphics. These techniques are derived from analysis and simulation results of hardware circuits of GPU. Although low power3 D graphics ha...This paper studies some programming techniques for low power rendering for 3 D graphics. These techniques are derived from analysis and simulation results of hardware circuits of GPU. Although low power3 D graphics hardware design has been studied by other researchers,low power programming techniques from hardware perspective have not been investigated in depth. There are many factors that affect 3 D graphics rendering performance,such as the number of vertices,vertex sharing,level of details,texture mapping,and rendering algorithms. An analytical study of graphics rendering workload is performed and the effect of a number of programming tips such as vertex sharing,clock gating and buffering of unmoving or translational objects is deeply studied. The results presented in this paper can be used to guide 3 D graphics programming for optimizing both power consumption and performance.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
Modern computer techniques have been in use for several years to generate three-dimensional visualizations of human anatomy. Very good 3-D computer models of the human body are now available and used routinely in anat...Modern computer techniques have been in use for several years to generate three-dimensional visualizations of human anatomy. Very good 3-D computer models of the human body are now available and used routinely in anatomy instruction. These techniques are subsumed under the heading “virtual anatomy” to distinguish them from the conventional study of anatomy entailing cadavers and anatomy textbooks. Moreover, other imaging procedures (X-ray, angiography, CT and MR) are also used in virtual anatomy instruction. A recently introduced three-dimensional post-processing technique named Cinematic Rendering now makes it possible to use the output of routine CT and MR examinations as the basis for highly photo-realistic 3-D depictions of human anatomy. We have installed Cinematic Rendering (enabled for stereoscopy) in a high-definition 8K 3-D projection space that accommodates an audience of 150. The space’s projection surface measures 16 × 9 meters;images can be projected on both the front wall and the floor. A game controller can be used to operate Cinematic Rendering software so that it can generate interactive real-time depictions of human anatomy on the basis of CT and MR data sets. This prototype installation was implemented without technical problems;in day-to-day, real-world use over a period of 22 months, there were no impairments of service due to software crashes or other technical problems. We are already employing this installation routinely for educational offerings open to the public, courses for students in the health professions, and (continuing) professional education units for medical interns, residents and specialists—in, so to speak, the dissecting theater of the future.展开更多
The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically...The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.展开更多
In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rend...In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.展开更多
In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, ...In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.展开更多
渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲...渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲染所花费的时间,利用德国maxon公司Cinema 4D软件的Cinema 4D Team Render对3D动画进行分布式渲染测试。结果表明,此种方法确实可以成倍地减少3D动画渲染所花费的时间。展开更多
The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropr...The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture, we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail, including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.展开更多
In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ...In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ambiguity problem in the original marching cubes algorithm was eliminated by its index mechanism. Some results on the MRI images were presented. Based on extracting and clipping contours from a set of medial slice images and setting the patch vertices values according to the gray images, this algorithm may be applied to form the arbitrary section images with three dimensional effects. It can also enhance the visual effect and interpretation of medical data.展开更多
This paper analyzes the technical characteristic of three-dimensional display technology (3DTV) system and some core technologies yet to be solved. It points out the ways to solve these problems and presents an effe...This paper analyzes the technical characteristic of three-dimensional display technology (3DTV) system and some core technologies yet to be solved. It points out the ways to solve these problems and presents an effective solution for thediscomfort of watching the three-dimensional TV.展开更多
Recently, the popularity of 3D content is on the rise because of its immersive experience to view- ers. While demands for 3D contents and 3D technologies increase, only a few copyright protection methods for 3D conten...Recently, the popularity of 3D content is on the rise because of its immersive experience to view- ers. While demands for 3D contents and 3D technologies increase, only a few copyright protection methods for 3D contents have been proposed. The simplest infringement is the illegal distribution of the single 2D image from 3D content. The leaked image is still valuable as 2D content and the leakage can be occurred in DIBR system. To detect the leaked image, we focus on the hole-filled region which is caused by the hole-filling procedure mandatory in DIBR system. To estimate the hole-filled regions, two different procedures are conducted to extract edges and to estimate 3D warping traces, respectively. After that, the hole-filled regions are estimated and the left-right-eye image discrimination (LR discrimination) is also conducted. Experimental results demonstrate the effectiveness of the proposed method using quantitative measures.展开更多
In this article, we present a three-dimensional visualization technique that has been developed in order to establish an interactive immersive environment to visualize the particles in granular materials and dislocati...In this article, we present a three-dimensional visualization technique that has been developed in order to establish an interactive immersive environment to visualize the particles in granular materials and dislocations in crystals. Simple elementary objects often exhibit complex collective behavior. Understanding of such behaviors and developments of coarse-scale theories, often requires insight into collective behavior that can only be obtained through immersive visualization. By displaying the computational results in a virtual environment with three-dimensional perception, one can immerse inside the model and analyze the intricate and very complex behavior of individual particles and dislocations. We built the stereographic images of the models using OpenGL rendering technique and then combine with the Virtual Reality technology in order to immerse in the three-dimensional model. A head mounted display has been used to allow the user to immerse inside the models and a flock of birds tracking device that allows the movements around and within the immersive environment.展开更多
The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the...The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.展开更多
基金the Science and Technology Program of Educational Commission of Jiangxi Province,China(DA202104172)the Innovation and Entrepreneurship Course Program of Nanchang Hangkong University(KCPY1910)the Teaching Reform Research Program of Nanchang Hangkong University(JY21040).
文摘Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D online tourism, Web3D online architecture, Web3D online education environment, Web3D online medical care, and Web3D online shopping are examples of these applications that leverage 3D rendering on the web. These applications have pushed the boundaries of traditional web applications that use text, sound, image, video, and 2D animation as their main communication media, and resorted to 3D virtual scenes as the main interaction object, enabling a user experience that delivers a strong sense of immersion. This paper approached the emerging Web3D applications that generate stronger impacts on people's lives through “real-time rendering technology”, which is the core technology of Web3D. This paper discusses all the major 3D graphics APIs of Web3D and the well-known Web3D engines at home and abroad and classify the real-time rendering frameworks of Web3D applications into different categories. Results Finally, this study analyzed the specific demand posed by different fields to Web3D applications by referring to the representative Web3D applications in each particular field. Conclusions Our survey results show that Web3D applications based on real-time rendering have in-depth sectors of society and even family, which is a trend that has influence on every line of industry.
基金The National Natural Science Foundation of China(No.61473088)Six Talent Peaks Projects in Jiangsu Province
文摘To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.
基金Sponsored by the Key Program of National Natural Science Foundation of China(Grant No61136002)the Research Grants from the Shaanxi Provincial Government(Grant Nos.2013KTZB01-07,2014ZS-08 and S2015TQGY0166)the Shaanxi Education Bureau(Grant No.2050205)
文摘This paper studies some programming techniques for low power rendering for 3 D graphics. These techniques are derived from analysis and simulation results of hardware circuits of GPU. Although low power3 D graphics hardware design has been studied by other researchers,low power programming techniques from hardware perspective have not been investigated in depth. There are many factors that affect 3 D graphics rendering performance,such as the number of vertices,vertex sharing,level of details,texture mapping,and rendering algorithms. An analytical study of graphics rendering workload is performed and the effect of a number of programming tips such as vertex sharing,clock gating and buffering of unmoving or translational objects is deeply studied. The results presented in this paper can be used to guide 3 D graphics programming for optimizing both power consumption and performance.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
文摘Modern computer techniques have been in use for several years to generate three-dimensional visualizations of human anatomy. Very good 3-D computer models of the human body are now available and used routinely in anatomy instruction. These techniques are subsumed under the heading “virtual anatomy” to distinguish them from the conventional study of anatomy entailing cadavers and anatomy textbooks. Moreover, other imaging procedures (X-ray, angiography, CT and MR) are also used in virtual anatomy instruction. A recently introduced three-dimensional post-processing technique named Cinematic Rendering now makes it possible to use the output of routine CT and MR examinations as the basis for highly photo-realistic 3-D depictions of human anatomy. We have installed Cinematic Rendering (enabled for stereoscopy) in a high-definition 8K 3-D projection space that accommodates an audience of 150. The space’s projection surface measures 16 × 9 meters;images can be projected on both the front wall and the floor. A game controller can be used to operate Cinematic Rendering software so that it can generate interactive real-time depictions of human anatomy on the basis of CT and MR data sets. This prototype installation was implemented without technical problems;in day-to-day, real-world use over a period of 22 months, there were no impairments of service due to software crashes or other technical problems. We are already employing this installation routinely for educational offerings open to the public, courses for students in the health professions, and (continuing) professional education units for medical interns, residents and specialists—in, so to speak, the dissecting theater of the future.
基金Shanghai Science and Technology Devel-opment Fund(9944 190 2 7)
文摘The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.
文摘In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.
基金the Advanced Project Foundation between China and France(PRA SI03-02).
文摘In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.
文摘渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲染所花费的时间,利用德国maxon公司Cinema 4D软件的Cinema 4D Team Render对3D动画进行分布式渲染测试。结果表明,此种方法确实可以成倍地减少3D动画渲染所花费的时间。
基金This work was supported by National Basic Research Program of China (No.2002CB312105)Key National Natural Science Foundation of China Project on Digital Olympic Museum(No.60533080).
文摘The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture, we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail, including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.
文摘In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ambiguity problem in the original marching cubes algorithm was eliminated by its index mechanism. Some results on the MRI images were presented. Based on extracting and clipping contours from a set of medial slice images and setting the patch vertices values according to the gray images, this algorithm may be applied to form the arbitrary section images with three dimensional effects. It can also enhance the visual effect and interpretation of medical data.
基金supported by the National Natural Science Foundation of China(Grant No.60832003)the Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)the Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education,China(Grant No.P200801)
文摘This paper analyzes the technical characteristic of three-dimensional display technology (3DTV) system and some core technologies yet to be solved. It points out the ways to solve these problems and presents an effective solution for thediscomfort of watching the three-dimensional TV.
文摘Recently, the popularity of 3D content is on the rise because of its immersive experience to view- ers. While demands for 3D contents and 3D technologies increase, only a few copyright protection methods for 3D contents have been proposed. The simplest infringement is the illegal distribution of the single 2D image from 3D content. The leaked image is still valuable as 2D content and the leakage can be occurred in DIBR system. To detect the leaked image, we focus on the hole-filled region which is caused by the hole-filling procedure mandatory in DIBR system. To estimate the hole-filled regions, two different procedures are conducted to extract edges and to estimate 3D warping traces, respectively. After that, the hole-filled regions are estimated and the left-right-eye image discrimination (LR discrimination) is also conducted. Experimental results demonstrate the effectiveness of the proposed method using quantitative measures.
文摘In this article, we present a three-dimensional visualization technique that has been developed in order to establish an interactive immersive environment to visualize the particles in granular materials and dislocations in crystals. Simple elementary objects often exhibit complex collective behavior. Understanding of such behaviors and developments of coarse-scale theories, often requires insight into collective behavior that can only be obtained through immersive visualization. By displaying the computational results in a virtual environment with three-dimensional perception, one can immerse inside the model and analyze the intricate and very complex behavior of individual particles and dislocations. We built the stereographic images of the models using OpenGL rendering technique and then combine with the Virtual Reality technology in order to immerse in the three-dimensional model. A head mounted display has been used to allow the user to immerse inside the models and a flock of birds tracking device that allows the movements around and within the immersive environment.
文摘The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.