期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Design,progress and challenges of 3D carbon-based thermally conductive networks
1
作者 JING Yuan LIU Han-qing +2 位作者 ZHOU Feng DAI Fang-na WU Zhong-shuai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期844-871,共28页
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a... The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed. 展开更多
关键词 Carbon material 3d network GRAPHENE thermal conductivity Heat transfer
下载PDF
3D-printable Boron Nitride/Polyacrylic Hydrogel Composites with High Thermal Conductivities
2
作者 DAI Jialei XUE Bingyu +5 位作者 QIAN Qi HE Wenhao ZHU Chenglong LEI Liwen WANG Kun XIE Jingjing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1303-1310,共8页
Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of... Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained. 展开更多
关键词 hydrogel composites boron nitride 3d printing thermal conductivity
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
3
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3d C/SiC composites Finite element analyses Multi-scale modeling thermal conductivity
下载PDF
Effective Thermal Conductivity for 3D Five-Directional Braided Composites Based on Microstructural Analysis
4
作者 ZHAO Xiao MAO Junkui JIANG Hua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期128-138,共11页
A method for predicting effective thermal conductivities(ETCs) of three-dimensional five-directional(3D5D) braided composites is presented. The effective thermal conductivity prediction method contains a digital image... A method for predicting effective thermal conductivities(ETCs) of three-dimensional five-directional(3D5D) braided composites is presented. The effective thermal conductivity prediction method contains a digital image processing technology. Multiple scanning electron microscopy(SEM)images of composites are analyzed to obtain actual microstructural features. These actual microstructural features of 3D5D braided composites are introduced into representative volume element(RVE) modeling. Apart from applying actual microstructural features,compression effects between yarns are considered in the modeling of RVE,making the RVE more realistic. Therefore,the ETC prediction method establishes a representative unit cell model that better reflects the true microstructural characteristics of the 3D5D braided composites. The ETCs are predicted with the finite element method. Then thermal conductivity measurements are carried out for a 3D5D braided composite sample.By comparing the predicted ETC with the measured thermal conductivity, the whole process of the ETC prediction method is proved to be effective and accurate,where a relative error of only 2.9 % is obtained.Furthermore,the effects of microstructural features are investigated,indicating that increasing interior braiding angles and fiber fill factor can lead to higher transverse ETCs. Longitudinal ETCs decrease with increasing interior braiding angles,but increase with increasing fiber fill factor. Finally,the influence of variations of microstructure parameters observed in digital image processing are investigated. To explore the influence of variations in microstructural features on variations in predicted ETCs,the actual probability distributions of microstructural features obtained from the 3D5D braided composite sample are introduced into the ETC investigation. The results show that,compared with the interior braiding angle,variations in the fiber fill factor exhibit more significant effects on variations in ETCs. 展开更多
关键词 EFFECTIVE thermal conductIVITY digital IMAGE processing VARIATION 3d five-directional braided COMPOSITES
下载PDF
Spider Web‑Inspired Graphene Skeleton‑Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management 被引量:15
5
作者 Ying Lin Qi Kang +4 位作者 Han Wei Hua Bao Pingkai Jiang Yiu‑Wing Mai Xingyi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期308-321,共14页
Phase change materials(PCMs)can be used for efficient thermal energy harvesting,which has great potential for cost-effective thermal management and energy storage.However,the low intrinsic thermal conductivity of poly... Phase change materials(PCMs)can be used for efficient thermal energy harvesting,which has great potential for cost-effective thermal management and energy storage.However,the low intrinsic thermal conductivity of polymeric PCMs is a bottleneck for fast and efficient heat harvesting.Simultaneously,it is also a challenge to achieve a high thermal conductivity for phase change nanocomposites at low filler loading.Although constructing a three-dimensional(3D)thermally conductive network within PCMs can address these problems,the anisotropy of the 3D framework usually leads to poor thermal conductivity in the direction perpendicular to the alignment of fillers.Inspired by the interlaced structure of spider webs in nature,this study reports a new strategy for fabricating highly thermally conductive phase change composites(sw-GS/PW)with a 3D spider web(sw)-like structured graphene skeleton(GS)by hydrothermal reaction,radial freeze-casting and vacuum impregnation in paraffin wax(PW).The results show that the sw-GS hardly affected the phase transformation behavior of PW at low loading.Especially,sw-GS/PW exhibits both high cross-plane and in-plane thermal conductivity enhancements of~1260%and~840%,respectively,at an ultra-low filler loading of 2.25 vol.%.The thermal infrared results also demonstrate that sw-GS/PW possessed promising applications in battery thermal management. 展开更多
关键词 thermal conductivity Radial freeze-casting Phase change materials 3d graphene aerogel thermal management
下载PDF
Fabrication of Fibrous Mullite-alumina Ceramic with High Strength and Low Thermal Conductivity
6
作者 YANG Mengmeng LUO Xudong +2 位作者 YI Jian ZHANG Xiaofang PENG Zijun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1415-1420,共6页
Optimizing highly porous fibrous ceramics, like bird’s nest structure, were obtained by vacuum impregnation method with mullite fibers and alumina sol as raw material. The influences of impregnation cycles on the pro... Optimizing highly porous fibrous ceramics, like bird’s nest structure, were obtained by vacuum impregnation method with mullite fibers and alumina sol as raw material. The influences of impregnation cycles on the property of the sample, such as porosity, compressive strength and room-temperature thermal conductivity were explored. The experimental results show that the 3D skeleton structure of the sample was constructed by the randomly arranged mullite fibers and inorganic particles. The content of alumina can be adjusted effectively by impregnation times and it increases with increasing impregnation cycles. The thermal conductivity and compressive strength can also be controlled via tailored impregnation cycles. The compressive strength of fibrous ceramic ranged from 1.03 MPa to 5.31 MPa, while the porosity decrease slightly from 85.3% to 73.8%. In the same time, the thermal conductivity increase from 0.037 W/(m·K) to 0.217 W/(m·K), indicating that the fibrous ceramic with high impressive and low thermal conductivity can be fabricated by impregnation method. 展开更多
关键词 fibrous mullite-alumina materials CERAMIC 3d skeleton structure alumina sol thermal conductivity
下载PDF
Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology 被引量:21
7
作者 Teng-Bo Ma Hao Ma +4 位作者 Kun-Peng Ruan Xue-Tao Shi Hua Qiu Sheng-Yuan Gao Jun-Wei Gu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第3期248-255,I0006,共9页
This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs(o-GNPs/PLA) via fused deposition modeling(FDM) 3 D printing technology.Further c... This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs(o-GNPs/PLA) via fused deposition modeling(FDM) 3 D printing technology.Further combinations of o-GNPs/PLA with Ti_(3) C_(2) T_(x) films prepared by vacuum-assisted filtration were carried out by "layer-by-layer stacking-hot pressing" to be the thermally conductive Ti_(3) C_(2) T_(x)/(oGNPs/PLA) composites with superior electromagnetic interference shielding effectiveness(EMI SE).When the content of GNPs was 18.60 wt%and 4 layers of Ti_(3) C_(2) T_(x)(6.98 wt%) films were embedded,the in-plane thermal conductivity coefficient(λ_(Ⅱ)) and EMI SE(EMI SE_(Ⅱ)) values of the thermally conductive Ti_(3) C_(2) T_(x)/(o-GNPs/P LA) composites significantly increa sed to 3.44 W·m^(-1)·K^(-1) and 65 d B(3.00 mm),increased by 1223.1% and2066.7%,respectively,compared with λ_(Ⅱ)(0.26 W·m^(-1)·K^(-1)) and EMI SE_(Ⅱ)(3 d B) of neat PLA matrix.This work offers a novel and easily route for designing and manufacturing highly thermally conductive polymer composites with superior EMI SE for broader application. 展开更多
关键词 Polymer-matrix composites(PMCs) Ti_(3)C_(2)T_(x) 3d printing thermal conductivity Electromagnetic interference(EMI)
原文传递
Construction of 3D interconnected boron nitride/carbon nanofiber hybrid network within polymer composite for thermal conductivity improvement 被引量:2
8
作者 Yexiang Cui Fei Xu +7 位作者 Di Bao Yueyang Gao Jianwen Peng Dan Lin Haolei Geng Xiaosong Shen Yanji Zhu Huaiyuan Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第16期165-175,共11页
With the increasing power density and integration of electronic devices,polymeric composites with high thermal conductivity(TC)are in urgent demand for solving heat accumulation issues.However,the direct introduction ... With the increasing power density and integration of electronic devices,polymeric composites with high thermal conductivity(TC)are in urgent demand for solving heat accumulation issues.However,the direct introduction of inorganic fillers into a polymer matrix at low filler content usually leads to low TC enhancement.In this work,an interconnected three-dimensional(3D)polysulfone/hexagonal boron nitride-carbon nanofiber(PSF/BN-CNF)skeleton was prepared via the salt templated method to address this issue.After embedding into the epoxy(EP),the EP/PSF/BN-CNF composite presents a high TC of 2.18 W m^(−1) K^(−1) at a low filler loading of 28.61 wt%,corresponding to a TC enhancement of 990%compared to the neat epoxy.The enhanced TC is mainly attributed to the fabricated 3D interconnected structure and the efficient synergistic effect of BN and CNF.In addition,the TC of the epoxy composites can be further increased to 2.85 W m^(−1) K^(−1) at the same filler loading through a post-heat treatment of the PSF/BN-CNF skeletons.After carbonization at 1500°C,the adhesive PSF was converted into carbonaceous layers,which could serve as a thermally conductive glue to connect the filler network,further decreasing the interfacial thermal resistance and promoting phonon transport.Besides,the good heat dissipation performance of the EP/C/BN-CNF composites was directly confirmed by thermal infrared imaging,indicating a bright and broad application in the thermal management of modern electronics and energy fields. 展开更多
关键词 thermal conductivity Boron nitride Carbon nanofiber 3d network Epoxy composites
原文传递
Preparation and 3D printing of high-thermal-conductivity continuous mesophase-pitch-based carbon fiber/epoxy composites 被引量:2
9
作者 Haiguang ZHANG Kunlong ZHAO +1 位作者 Qingxi HU Jinhe WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第2期162-172,共11页
To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pit... To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pitch-based carbon fiber/thermoplastic polyurethane/epoxy(CMPCF/TPU/epoxy)composite filament and its preparation process in this study.The composite filament is based on the high thermal conductivity of CMPCF,the high elasticity of TPU,and the high-temperature resistance of epoxy.The tensile strength and thermal conductivity of the CMPCF/TPU/epoxy composite filament were tested.The CMPCF/TPU/epoxy composites are formed by 3D printing technology,and the composite filament is laid according to the direction of heat conduction so that the printed part can meet the needs of directional heat conduction.The experimental results show that the thermal conductivity of the printed sample is 40.549 W/(m·K),which is 160 times that of pure epoxy resin(0.254 W/(m·K)).It is also approximately 13 times better than that of polyacrylonitrile carbon fiber/epoxy(PAN-CF/epoxy)composites.This study breaks through the technical bottleneck of poor printability of CMPCF.It provides a new method for achieving directional thermal conductivity printing,which is important for the development of complex high-performance thermal conductivity products. 展开更多
关键词 thermal conductivity 3d printing Continuous mesophase-pitch-based carbon fiber(CMPCF) Thermoplastic polyurethane(TPU) Epoxy composite filament
原文传递
Polymer composites designed with 3D fibrous CNT“tracks”achieving excellent thermal conductivity and electromagnetic interference shielding efficiency 被引量:2
10
作者 Gui Yang Liangchun Zhou +7 位作者 Mingjie Wang Tiantian Xiang Duo Pan Jingzhan Zhu Fengmei Su Youxin Ji Chuntai Liu Changyu Shen 《Nano Research》 SCIE EI CSCD 2023年第8期11411-11421,共11页
The rapid improvement in the running speed,transmission efficiency,and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electro... The rapid improvement in the running speed,transmission efficiency,and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electromagnetic interference(EMI)shielding performance are urgently required.Here,inspired by the fibrous pathways of the human nervous system,a“core–sheath”fibers structured strategy was proposed to prepare thermoplastic polyurethane/polydopamine/carbon nanotube(TPU/PDA/CNT)composites film with thermal management capability and EMI shielding performance.Firstly,TPU@PDA@CNT fibers with CNT shell were prepared by a facile polydopamine-assisted coating on electrospun TPU fibers.Subsequently,TPU/PDA/CNT composites with three-dimensional(3D)fibrous CNT“tracks”are obtained by a hot-pressing process,where CNTs distributed on adjacent fibers are compactly contacted.The fabricated TPU/PDA/CNT composites exhibit a high in-plane thermal conductivity(TC)of 9.6 W/(m·K)at low CNT loading of 7.6 wt.%.In addition,it also presents excellent mechanical properties and excellent EMI shielding effectiveness of 48.3 dB as well as multi-source driven thermal management capabilities.Hence,this study provides a simple yet scalable technique to prepare composites with advanced thermal management and EMI shielding performance to develop new-generation wireless communication technologies and portable intelligent electronic devices. 展开更多
关键词 composites three-dimensional(3d)fibrous carbon nanotube(CNT)“tracks” in-plane thermal conductivity(TC) electromagnetic interference(EMI)shielding multi-source driven thermal management
原文传递
Investigation of Material Properties Based on 3D Graphite Morphology for Compacted Graphite Iron
11
作者 Chenglu Zou Yan Zhao +6 位作者 Gang Zhu Jianchao Pang Shaogang Wang Yangzhen Liu Feng Liu Shouxin Li Zhefeng Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期1077-1086,共10页
The strength and thermal conductivity of compacted graphite iron(CGI)are crucial performance indicators in its engineering application.The presence of graphite in CGI significantly influences the two properties.In the... The strength and thermal conductivity of compacted graphite iron(CGI)are crucial performance indicators in its engineering application.The presence of graphite in CGI significantly influences the two properties.In the previous studies,graphite in CGI was often described using two-dimensional(2D)morphology.In this study,the three-dimensional(3D)size,shape,and distribution of graphite in CGI were analyzed using X-ray tomography.Based on this,a new method is introduced to calculate the 3D vermicularity and compare it with the 2D vermicularity in terms of tensile properties and thermal conductivity.The results demonstrate that vermicular graphite exhibits greater connectivity in 3D observation compared to 2D observation.Therefore,the calculation method of 3D vermicularity is determined by considering the surface area and volume of the connected graphite.Then a linear relationship between 3 and 2D vermicularity has been observed.By comparing the correlation coefficient,it has been found that the 3D vermicularity offers a more accurate method to establish the relationship among graphite morphology,thermal conductivity and tensile property of CGI. 展开更多
关键词 Compacted graphite iron 3d graphite morphology X-ray tomography thermal conductivity Tensile property
原文传递
三维五向编织复合材料导热性能的有限元分析 被引量:24
12
作者 李典森 卢子兴 +1 位作者 刘振国 李仲平 《航空动力学报》 EI CAS CSCD 北大核心 2008年第8期1455-1460,共6页
根据三维五向编织复合材料的细观结构模型,分别假设编织纱线和轴纱具有六边形和正方形横截面,建立了计算三维五向编织复合材料导热性能的有限元模型.采用有限元方法,设定合理的边界条件,计算了三维五向编织复合材料的横向和纵向热传导系... 根据三维五向编织复合材料的细观结构模型,分别假设编织纱线和轴纱具有六边形和正方形横截面,建立了计算三维五向编织复合材料导热性能的有限元模型.采用有限元方法,设定合理的边界条件,计算了三维五向编织复合材料的横向和纵向热传导系数,并与三维四向编织复合材料的热传导系数进行了比较,分析了编织角和纤维体积含量对热传导系数的影响规律.此外,还确定了材料内部的温度、热梯度及热流量的分布,为材料热力耦合问题的分析奠定了基础. 展开更多
关键词 三维五向编织 编织复合材料 导热性能 有限元 单胞
下载PDF
3D打印调控铜线/聚乳酸复合材料的导热通路长度和数量 被引量:4
13
作者 马腾博 阮坤鹏 +2 位作者 郭永强 韩懿鑫 顾军渭 《Science China Materials》 SCIE EI CAS CSCD 2023年第10期4012-4021,共10页
导热通路对理解导热高分子复合材料的导热行为至关重要,但目前有关导热通路属性(长度、数量)对高分子复合材料导热系数的影响机制缺乏深入研究.本文采用3D打印技术制备了铜线(Cw)导热通路长度和数量可控的一维铜线/聚乳酸(1D-Cw/PLA)导... 导热通路对理解导热高分子复合材料的导热行为至关重要,但目前有关导热通路属性(长度、数量)对高分子复合材料导热系数的影响机制缺乏深入研究.本文采用3D打印技术制备了铜线(Cw)导热通路长度和数量可控的一维铜线/聚乳酸(1D-Cw/PLA)导热复合材料,建立了针对一维导热通路的高分子复合材料的导热模型,明晰了其导热通路属性与其导热性能的定量关系.相同Cw用量下,1D-Cw/PLA导热复合材料的面内导热系数与导热通路的数量和长度呈正相关.采用本文构建的导热模型和经验方程对1D-Cw/PLA复合材料的导热系数进行预测,95%的置信度表明预测值与实测值无显著差异. 展开更多
关键词 3d printing thermally conductive composites thermal conduction
原文传递
碳系填料构筑具有隔离结构导热复合材料进展
14
作者 徐冰峰 张世豪 +3 位作者 张荣 付旭东 刘清亭 胡圣飞 《塑料》 CAS CSCD 北大核心 2023年第1期104-110,121,共8页
导热途径不均匀导致导热效率较低是制备高导热聚合物复合材料的重点难题,制备具有优良导热性能的复合材料仍面临巨大的挑战。制备具有三维导热网络结构的复合材料,有效地提高了热导率,是目前导热复合材料研究的热点。隔离结构的导热复... 导热途径不均匀导致导热效率较低是制备高导热聚合物复合材料的重点难题,制备具有优良导热性能的复合材料仍面临巨大的挑战。制备具有三维导热网络结构的复合材料,有效地提高了热导率,是目前导热复合材料研究的热点。隔离结构的导热复合材料具有独特的导热网络结构,为声子提供了有效的传播途径,并且能降低填料-基体、填料-填料间的界面热阻,在低负载下能获得高热导率。综述了近年来碳系填料构筑隔离结构的导热复合材料的研究进展,分析了具有隔离结构复合材料的导热机理及制备方法,对各类方法制备复合材料的性能、特点缺陷进行概括对比,并且对能提升热导率的方法进行简要分析。 展开更多
关键词 聚合物 三维导热网络 碳系填料 导热复合材料 隔离结构
下载PDF
High-performance multifunctional(Hf^(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C high-entropy ceramic reinforced with low-loading 3D hybrid graphene–carbon nanotube 被引量:2
15
作者 Jialin SUN Jun ZHAO +5 位作者 Yonghui ZHOU Peng ZHAI Xialun YUN Zhifu HUANG Hui ZHANG Guohua ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第2期341-356,共16页
There has been growing interest in the high-entropy ceramic(HEC)recently owing to its tailorable compositions and microstructures,versatile properties,together with promising structural and functional applications.How... There has been growing interest in the high-entropy ceramic(HEC)recently owing to its tailorable compositions and microstructures,versatile properties,together with promising structural and functional applications.However,inferior fracture toughness(KIC)and damage tolerance restricted many practical applications of the HEC.Herein,we addressed this challenge by incorporating a threedimensional graphene–carbon nanotube(3D G–CNT)as toughening agent in(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C.The resulting enhanced 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C featured an outstanding toughness of 8.23 MPa·m^(1/2),while remaining superior strength(763 MPa)and hardness(24.7 GPa).An ultralow friction coefficient(0.15)coupled with an ultralow wear rate(w,2.6×10^(−7) mm^(3)/(N·m))in the 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C was obtained primarily as a function of lubricating scrolls,in which two-dimensional(2D)graphene acted as a tribolayer,and one-dimensional(1D)carbon nanotubes acted as nano ball bearings embedded inside.Strikingly,the 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C exhibited rather low thermal conductivity(κ)yet excellent electrical conductivity(σ,1.3×10^(6) S/m)in comparison with the pure(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C.This study provided great potential for maximizing the physical and functional properties of the HEC for various applications. 展开更多
关键词 high-entropy ceramic(HEC) three-dimensional graphene-carbon nanotube(3d G-CNT) TOUGHENING lubricating thermal conductivity(κ)/electrical conductivity(σ)
原文传递
FORECAST OF WATER TEMPERATURE IN RESERVOIR BASED ON ANALYTICAL SOLUTION 被引量:4
16
作者 JI Shun-wen ZHU Yue-ming +1 位作者 QIANG Sheng ZENG Deng-feng 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第4期507-513,共7页
The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduct... The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduction-diffusion equations were converted into a system consisting of 2-D equations with the Fourier expansion and some hypotheses. Then the statistical model of forecasting the water temperature was developed based on the analytical solution to the 2-D thermal equations. The~ simplified statistical model can elucidate the main physical mechanism of the temperature variation much more clearly than the numerical simulation with the Navier-Stokes equations. Finally, with the presented statistical model, the distribution of water temperature in the Shangyoujiang reservoir was determined. 展开更多
关键词 water temperature quasi 3-d statistical model thermal conduction-diffusion equation analytical solution regression analysis factor of radiation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部