In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and stron...In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.展开更多
Six degrees of freedom(6DoF)input interfaces are essential formanipulating virtual objects through translation or rotation in three-dimensional(3D)space.A traditional outside-in tracking controller requires the instal...Six degrees of freedom(6DoF)input interfaces are essential formanipulating virtual objects through translation or rotation in three-dimensional(3D)space.A traditional outside-in tracking controller requires the installation of expensive hardware in advance.While inside-out tracking controllers have been proposed,they often suffer from limitations such as interaction limited to the tracking range of the sensor(e.g.,a sensor on the head-mounted display(HMD))or the need for pose value modification to function as an input interface(e.g.,a sensor on the controller).This study investigates 6DoF pose estimation methods without restricting the tracking range,using a smartphone as a controller in augmented reality(AR)environments.Our approach involves proposing methods for estimating the initial pose of the controller and correcting the pose using an inside-out tracking approach.In addition,seven pose estimation algorithms were presented as candidates depending on the tracking range of the device sensor,the tracking method(e.g.,marker recognition,visual-inertial odometry(VIO)),and whether modification of the initial pose is necessary.Through two experiments(discrete and continuous data),the performance of the algorithms was evaluated.The results demonstrate enhanced final pose accuracy achieved by correcting the initial pose.Furthermore,the importance of selecting the tracking algorithm based on the tracking range of the devices and the actual input value of the 3D interaction was emphasized.展开更多
Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emerge...Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework.展开更多
This paper tackles pose tracking and model refinement, one of the fundamental work for 3D photogrammetry. The researches belong to the videometrics, an interdisciplinewhich combines computer vision, digital image proc...This paper tackles pose tracking and model refinement, one of the fundamental work for 3D photogrammetry. The researches belong to the videometrics, an interdisciplinewhich combines computer vision, digital image processing, photogrammetry and optical measurement. Related works are summarized briefly in this paper. This paper studies the problem of pose tracking for target with 3D model. For the target with accurate 3D model, line model based pose tracking methods are proposed for target which is rich in line features. Experimental results indicate that the proposed methods track the target pose accurately. Normal distance iterative reweighted least squares and distance image iterative least squares methods are proposed to process more general targets. This paper adopts bundle adjustment to tackle pose tracking in image sequence for target with inaccurate 3D line model. The proposed method optimizes the model line parameters and the pose parameters simultaneously. The model line orientation, position and mean angle error, mean position error of the pose are 0.3°,3.5 mm and 0.12°,20.1 mm in simulation experiments of satellite pose tracking. Line features are used to track target pose with unknown 3D model through image sequence. The model line parameters and pose parameters are optimized under the framework of SFM. In simulation experiments, the reconstructed line orientation, position error and mean angle error, mean position error of pose are 0.4°,7.5 mm and 0.16°,23.5 mm.展开更多
Three-dimensional(3D)tracking of rigid objects plays a very important role in many areas such as augmented reality,computer vision,and robotics.Numerous works have been done to pursue more stable,faster,and more accur...Three-dimensional(3D)tracking of rigid objects plays a very important role in many areas such as augmented reality,computer vision,and robotics.Numerous works have been done to pursue more stable,faster,and more accurate 3D tracking.Among various tracking methods,edge-based 3D tracking has been widely used owing to its many advantages.Furthermore,edge-based methods can be mainly divided into two categories,methods without and those with explicit edges,depending on whether explicit edges need to be extracted.Based on this,representative methods in both categories are introduced,analyzed,and compared in this paper.Finally,some suggestions on the choice of methods in different application scenarios and research directions in the future are given.展开更多
The three-dimensional(3D)mechanical response of the cornea to intraocular pressure(IOP)elevation has not been previously reported.In this study,we use an ultrasound speckle tracking technique to measure the 3D displac...The three-dimensional(3D)mechanical response of the cornea to intraocular pressure(IOP)elevation has not been previously reported.In this study,we use an ultrasound speckle tracking technique to measure the 3D displacements and strains within the central 5.5 mm of porcine corneas during the whole globe infation.Infation tests were performed on dextran-treated corneas(treated with a 10%dextran solution)and untreated corneas.The dextran-treated corneas showed an inflation response expectod of a thin spherical shell,with through-thickness thinning and in-plane stretch,although the strain magnitudes exhibited a heterogeneous spatial distribution from the central to more peripheral cornea.The untreated eyes demon-strated a response consistent with swelling during experimentation,w ith through-thickness expansion overriding the infation response.The average volume ratios obtained in both groups was near 1 confirming general incompresibility,but local regions of volume loss or expansion were observed.These results suggest that biomechanical measurements in 3D provide important new insight to understand the mechanical response of ocular tissues such as the cornea.展开更多
Three-dimensional (3D) human pose tracking has recently attracted more and more attention in the computer vision field. Real-time pose tracking is highly useful in various domains such as video surveillance, somatosen...Three-dimensional (3D) human pose tracking has recently attracted more and more attention in the computer vision field. Real-time pose tracking is highly useful in various domains such as video surveillance, somatosensory games, and human-computer interaction. However, vision-based pose tracking techniques usually raise privacy concerns, making human pose tracking without vision data usage an important problem. Thus, we propose using Radio Frequency Identification (RFID) as a pose tracking technique via a low-cost wearable sensing device. Although our prior work illustrated how deep learning could transfer RFID data into real-time human poses, generalization for different subjects remains challenging. This paper proposes a subject-adaptive technique to address this generalization problem. In the proposed system, termed Cycle-Pose, we leverage a cross-skeleton learning structure to improve the adaptability of the deep learning model to different human skeletons. Moreover, our novel cycle kinematic network is proposed for unpaired RFID and labeled pose data from different subjects. The Cycle-Pose system is implemented and evaluated by comparing its prototype with a traditional RFID pose tracking system. The experimental results demonstrate that Cycle-Pose can achieve lower estimation error and better subject generalization than the traditional system.展开更多
This paper will discuss strategies for trinocular image rectification and matching for linear object tracking.It is well known that a pair of stereo images generates two epipolar images.Three overlapped images can yie...This paper will discuss strategies for trinocular image rectification and matching for linear object tracking.It is well known that a pair of stereo images generates two epipolar images.Three overlapped images can yield six epipolar images in situations where any two are required to be rectified for the purpose of image matching.In this case,the search for feature correspondences is computationally intensive and matching complexity increases.A special epipolar image rectification for three stereo images,which simplifies the image matching process,is therefore proposed.This method generates only three rectified images,with the result that the search for matching features becomes more straightforward.With the three rectified images,a particular line_segment_based correspondence strategy is suggested.The primary characteristics of the feature correspondence strategy include application of specific epipolar geometric constraints and reference to three_ray triangulation residuals in object space.展开更多
This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors ...This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.展开更多
In 3D games, a lot of weapons in the movement will drag a "follow the shadow" effect, which is called the "track". In this paper, we first analyze the change rule of the "track", and then put forward a kind of a...In 3D games, a lot of weapons in the movement will drag a "follow the shadow" effect, which is called the "track". In this paper, we first analyze the change rule of the "track", and then put forward a kind of algorithm to realize the "track". The calculation of this algorithm is small, but the effect is very real, has been successfully applied to a variety of 3D games.展开更多
Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting w...Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting with the basic data structure,this survey reviews the latest developments of 3D modeling based on depth cameras,including research works on camera tracking,3D object and scene reconstruction,and high-quality texture reconstruction.We also discuss the future work and possible solutions for 3D modeling based on the depth camera.展开更多
The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to st...The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.展开更多
In the majority of the interaction process, the operator often focuses on the tracked 3D hand gesture model at the "interaction points" in the collision detectionscene, such as "grasp" and "release" and objects ...In the majority of the interaction process, the operator often focuses on the tracked 3D hand gesture model at the "interaction points" in the collision detectionscene, such as "grasp" and "release" and objects in the scene, without paying attention to the tracked 3D hand gesture model in the total procedure. Thus in this paper, a visual attention distribution model of operator in the "grasp", "translation", "release" and other basic operation procedures is first studied and a 3D hand gesture tracking algorithm based on this distribution model is proposed. Utilizing the algorithm, in the period with a low degree of visual attention, a pre-stored 3D hand gesture animation can be used to directly visualise a 3D hand gesture model in the interactive scene; in the time period with a high degree of visual attention, an existing "frame-by-frame tracking" approach can be adopted to obtain a 3D gesture model. The results demonstrate that the proposed method can achieve real-time tracking of 3D hand gestures with an effective improvement on the efficiency, fluency, and availability of 3D hand gesture interaction.展开更多
文摘In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.
文摘Six degrees of freedom(6DoF)input interfaces are essential formanipulating virtual objects through translation or rotation in three-dimensional(3D)space.A traditional outside-in tracking controller requires the installation of expensive hardware in advance.While inside-out tracking controllers have been proposed,they often suffer from limitations such as interaction limited to the tracking range of the sensor(e.g.,a sensor on the head-mounted display(HMD))or the need for pose value modification to function as an input interface(e.g.,a sensor on the controller).This study investigates 6DoF pose estimation methods without restricting the tracking range,using a smartphone as a controller in augmented reality(AR)environments.Our approach involves proposing methods for estimating the initial pose of the controller and correcting the pose using an inside-out tracking approach.In addition,seven pose estimation algorithms were presented as candidates depending on the tracking range of the device sensor,the tracking method(e.g.,marker recognition,visual-inertial odometry(VIO)),and whether modification of the initial pose is necessary.Through two experiments(discrete and continuous data),the performance of the algorithms was evaluated.The results demonstrate enhanced final pose accuracy achieved by correcting the initial pose.Furthermore,the importance of selecting the tracking algorithm based on the tracking range of the devices and the actual input value of the 3D interaction was emphasized.
文摘Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework.
基金The National Natural Science Foundation of China (11472302,11332012).
文摘This paper tackles pose tracking and model refinement, one of the fundamental work for 3D photogrammetry. The researches belong to the videometrics, an interdisciplinewhich combines computer vision, digital image processing, photogrammetry and optical measurement. Related works are summarized briefly in this paper. This paper studies the problem of pose tracking for target with 3D model. For the target with accurate 3D model, line model based pose tracking methods are proposed for target which is rich in line features. Experimental results indicate that the proposed methods track the target pose accurately. Normal distance iterative reweighted least squares and distance image iterative least squares methods are proposed to process more general targets. This paper adopts bundle adjustment to tackle pose tracking in image sequence for target with inaccurate 3D line model. The proposed method optimizes the model line parameters and the pose parameters simultaneously. The model line orientation, position and mean angle error, mean position error of the pose are 0.3°,3.5 mm and 0.12°,20.1 mm in simulation experiments of satellite pose tracking. Line features are used to track target pose with unknown 3D model through image sequence. The model line parameters and pose parameters are optimized under the framework of SFM. In simulation experiments, the reconstructed line orientation, position error and mean angle error, mean position error of pose are 0.4°,7.5 mm and 0.16°,23.5 mm.
基金Special Program of the Ministry of Industry and Information Technology of China.
文摘Three-dimensional(3D)tracking of rigid objects plays a very important role in many areas such as augmented reality,computer vision,and robotics.Numerous works have been done to pursue more stable,faster,and more accurate 3D tracking.Among various tracking methods,edge-based 3D tracking has been widely used owing to its many advantages.Furthermore,edge-based methods can be mainly divided into two categories,methods without and those with explicit edges,depending on whether explicit edges need to be extracted.Based on this,representative methods in both categories are introduced,analyzed,and compared in this paper.Finally,some suggestions on the choice of methods in different application scenarios and research directions in the future are given.
基金funded by NIH/NEI Grants R01EY020929 and R01EY025358.
文摘The three-dimensional(3D)mechanical response of the cornea to intraocular pressure(IOP)elevation has not been previously reported.In this study,we use an ultrasound speckle tracking technique to measure the 3D displacements and strains within the central 5.5 mm of porcine corneas during the whole globe infation.Infation tests were performed on dextran-treated corneas(treated with a 10%dextran solution)and untreated corneas.The dextran-treated corneas showed an inflation response expectod of a thin spherical shell,with through-thickness thinning and in-plane stretch,although the strain magnitudes exhibited a heterogeneous spatial distribution from the central to more peripheral cornea.The untreated eyes demon-strated a response consistent with swelling during experimentation,w ith through-thickness expansion overriding the infation response.The average volume ratios obtained in both groups was near 1 confirming general incompresibility,but local regions of volume loss or expansion were observed.These results suggest that biomechanical measurements in 3D provide important new insight to understand the mechanical response of ocular tissues such as the cornea.
基金supported in part by the US National Science Foundation(NSF)under Grants ECCS-1923163 and CNS-2107190through the Wireless Engineering Research and Education Center at Auburn University.
文摘Three-dimensional (3D) human pose tracking has recently attracted more and more attention in the computer vision field. Real-time pose tracking is highly useful in various domains such as video surveillance, somatosensory games, and human-computer interaction. However, vision-based pose tracking techniques usually raise privacy concerns, making human pose tracking without vision data usage an important problem. Thus, we propose using Radio Frequency Identification (RFID) as a pose tracking technique via a low-cost wearable sensing device. Although our prior work illustrated how deep learning could transfer RFID data into real-time human poses, generalization for different subjects remains challenging. This paper proposes a subject-adaptive technique to address this generalization problem. In the proposed system, termed Cycle-Pose, we leverage a cross-skeleton learning structure to improve the adaptability of the deep learning model to different human skeletons. Moreover, our novel cycle kinematic network is proposed for unpaired RFID and labeled pose data from different subjects. The Cycle-Pose system is implemented and evaluated by comparing its prototype with a traditional RFID pose tracking system. The experimental results demonstrate that Cycle-Pose can achieve lower estimation error and better subject generalization than the traditional system.
文摘This paper will discuss strategies for trinocular image rectification and matching for linear object tracking.It is well known that a pair of stereo images generates two epipolar images.Three overlapped images can yield six epipolar images in situations where any two are required to be rectified for the purpose of image matching.In this case,the search for feature correspondences is computationally intensive and matching complexity increases.A special epipolar image rectification for three stereo images,which simplifies the image matching process,is therefore proposed.This method generates only three rectified images,with the result that the search for matching features becomes more straightforward.With the three rectified images,a particular line_segment_based correspondence strategy is suggested.The primary characteristics of the feature correspondence strategy include application of specific epipolar geometric constraints and reference to three_ray triangulation residuals in object space.
文摘This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.
文摘In 3D games, a lot of weapons in the movement will drag a "follow the shadow" effect, which is called the "track". In this paper, we first analyze the change rule of the "track", and then put forward a kind of algorithm to realize the "track". The calculation of this algorithm is small, but the effect is very real, has been successfully applied to a variety of 3D games.
基金National Natural Science Foundation of China(61732016).
文摘Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting with the basic data structure,this survey reviews the latest developments of 3D modeling based on depth cameras,including research works on camera tracking,3D object and scene reconstruction,and high-quality texture reconstruction.We also discuss the future work and possible solutions for 3D modeling based on the depth camera.
基金Supported by the National Natural Science Foundation of China(61333011)
文摘The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.
基金Supported by the National Natural Science Foundation of China(61472163)the National Key Research&Development Plan of China(2016YFB1001403)the Science and Technology Project of Shandong Province(2015GGX101025)
文摘In the majority of the interaction process, the operator often focuses on the tracked 3D hand gesture model at the "interaction points" in the collision detectionscene, such as "grasp" and "release" and objects in the scene, without paying attention to the tracked 3D hand gesture model in the total procedure. Thus in this paper, a visual attention distribution model of operator in the "grasp", "translation", "release" and other basic operation procedures is first studied and a 3D hand gesture tracking algorithm based on this distribution model is proposed. Utilizing the algorithm, in the period with a low degree of visual attention, a pre-stored 3D hand gesture animation can be used to directly visualise a 3D hand gesture model in the interactive scene; in the time period with a high degree of visual attention, an existing "frame-by-frame tracking" approach can be adopted to obtain a 3D gesture model. The results demonstrate that the proposed method can achieve real-time tracking of 3D hand gestures with an effective improvement on the efficiency, fluency, and availability of 3D hand gesture interaction.