同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目...同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目标全姿态图像,以SVDD方法求取在高维空间内包含尽可能多目标特征向量的最小超球体相关参数,得到数量较少的支持向量将作为目标多视点视图的最佳模型.对多类目标不同姿态的图像(每类2592帧),以规则化不变矩描述目标外形特征,进行了建模实验,并通过识别实验验证了所提方法的有效性和可行性.展开更多
文摘同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目标全姿态图像,以SVDD方法求取在高维空间内包含尽可能多目标特征向量的最小超球体相关参数,得到数量较少的支持向量将作为目标多视点视图的最佳模型.对多类目标不同姿态的图像(每类2592帧),以规则化不变矩描述目标外形特征,进行了建模实验,并通过识别实验验证了所提方法的有效性和可行性.