Based on laws of theory of materials strengthening were discribed the experimentally obtained alloying effect in Mg-Ga system and shown using program for 3d atomic structures.As known from our experiments a homogeneou...Based on laws of theory of materials strengthening were discribed the experimentally obtained alloying effect in Mg-Ga system and shown using program for 3d atomic structures.As known from our experiments a homogeneous"wavy"microstructure of the diffusion zone forms as result of mass-transfer of molten gallium into the volume of magnesium alloys.SEM chemical composition shows Mg 65%wt.and Ga 35%wt.and X-ray spectra diffraction data-Mg5Ga2 intermetallic phase formation.Such intermetallic diffusion zone provides the significant strengthening effect of microstructure which was determined experimentally by the indentation method.The 3-d visualization shows the reaction and changing of an original crystal structure of magnesium atomic lattice upon diffusion doping with foreign atoms of gallium and then is shown the coalescence of Mg5Ga2 intermetallic crystal with crystals surfaces of Mg-matrix.So,investigated Mg-alloy strengthening at alloying with Ga explained by two main factors.At first is the formation of intermetallic phases with the ordering and consolidation of the crystal structure of the matrix by the ligature atoms,which is the key factor of the strengthening mechanism fixed experimentally.Second,when hexagonal and orthorhombic atomic structures growth according to their spatial type,a significant disorientation of structural fragments occurs,an increase in the density of the amorphous transition layer,a twinning of the structure in the interphase boundaries,which leads to the formation of intrinsic mutual deformation and a high level of internal stresses.展开更多
背景:3D打印技术可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,在创伤性骨折修复中展示了巨大的应用前景。目的:综述3D打印技术在创伤性骨折中的应用。方法:检索Web of science、PubMed和中国知网数据库2...背景:3D打印技术可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,在创伤性骨折修复中展示了巨大的应用前景。目的:综述3D打印技术在创伤性骨折中的应用。方法:检索Web of science、PubMed和中国知网数据库2020-2024年发表的创伤骨科领域3D打印技术应用的相关文献,英文检索词为“traumatic fracture,3D printing technology,digital model,surgical guide”,中文检索词为“创伤性骨折,3D打印技术,数字模型,手术导板”,经筛选和分析,最终纳入60篇文献进行分析。结果与结论:①创伤性骨折是各种致伤因素导致的骨骼连续性中断和完整性破坏的骨折现象,以可靠方案提高复位愈合效果,已成为骨外科相关研究领域亟需解决的热点问题;②3D打印技术是以数字模型数据为基础的,运用粉末状金属或聚合物等可黏合成型材料以立体光刻、沉积建模和光聚合物喷射等形式制造满足需求三维实体的技术,在数字骨科生物医学领域应用广泛;③3D打印技术在疾病诊断、术前规划、重建骨折三维模型、定制骨科植入体、定制固定支具及假肢、手术导板制作和骨缺损修复等方面发挥了显著的优势,可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,为创伤性骨折的治疗提供了新的思路。展开更多
文摘Based on laws of theory of materials strengthening were discribed the experimentally obtained alloying effect in Mg-Ga system and shown using program for 3d atomic structures.As known from our experiments a homogeneous"wavy"microstructure of the diffusion zone forms as result of mass-transfer of molten gallium into the volume of magnesium alloys.SEM chemical composition shows Mg 65%wt.and Ga 35%wt.and X-ray spectra diffraction data-Mg5Ga2 intermetallic phase formation.Such intermetallic diffusion zone provides the significant strengthening effect of microstructure which was determined experimentally by the indentation method.The 3-d visualization shows the reaction and changing of an original crystal structure of magnesium atomic lattice upon diffusion doping with foreign atoms of gallium and then is shown the coalescence of Mg5Ga2 intermetallic crystal with crystals surfaces of Mg-matrix.So,investigated Mg-alloy strengthening at alloying with Ga explained by two main factors.At first is the formation of intermetallic phases with the ordering and consolidation of the crystal structure of the matrix by the ligature atoms,which is the key factor of the strengthening mechanism fixed experimentally.Second,when hexagonal and orthorhombic atomic structures growth according to their spatial type,a significant disorientation of structural fragments occurs,an increase in the density of the amorphous transition layer,a twinning of the structure in the interphase boundaries,which leads to the formation of intrinsic mutual deformation and a high level of internal stresses.