When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t...When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape.展开更多
The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initi...The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.展开更多
Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose...Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.展开更多
Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hy...Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hydrogel based on N-isopropylacrylamide that achieved a fast and reversible deformation manipulated only by near-infrared(NIR)light.The hydrogel was fabricated by the projection micro stereolithography based 3D printing technique,which can rapidly prototype complex 3D structures.Furthermore,with the variation of the grayscale while manufacturing the hydrogel,the deformation of the hydrogel structure can be freely tuned within a few seconds by losing and absorbing water through adjusting the intensity and the irradiation direction of the NIR light,showing a potential application in ultra-fast object grabbing and transportation.The present study provides a new method for designing ultrafast photothermal responsive hydrogel based microrobot working in water.展开更多
This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, w...This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shapers accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06 mm.展开更多
Self-occlusions are common in rice canopy images and strongly influence the calculation accuracies of panicle traits. Such interference can be largely eliminated if panicles are phenotyped at the 3 D level.Research on...Self-occlusions are common in rice canopy images and strongly influence the calculation accuracies of panicle traits. Such interference can be largely eliminated if panicles are phenotyped at the 3 D level.Research on 3 D panicle phenotyping has been limited. Given that existing 3 D modeling techniques do not focus on specified parts of a target object, an efficient method for panicle modeling of large numbers of rice plants is lacking. This paper presents an automatic and nondestructive method for 3 D panicle modeling. The proposed method integrates shoot rice reconstruction with shape from silhouette, 2 D panicle segmentation with a deep convolutional neural network, and 3 D panicle segmentation with ray tracing and supervoxel clustering. A multiview imaging system was built to acquire image sequences of rice canopies with an efficiency of approximately 4 min per rice plant. The execution time of panicle modeling per rice plant using 90 images was approximately 26 min. The outputs of the algorithm for a single rice plant are a shoot rice model, surface shoot rice model, panicle model, and surface panicle model, all represented by a list of spatial coordinates. The efficiency and performance were evaluated and compared with the classical structure-from-motion algorithm. The results demonstrated that the proposed method is well qualified to recover the 3 D shapes of rice panicles from multiview images and is readily adaptable to rice plants of diverse accessions and growth stages. The proposed algorithm is superior to the structure-from-motion method in terms of texture preservation and computational efficiency. The sample images and implementation of the algorithm are available online. This automatic, cost-efficient, and nondestructive method of 3 D panicle modeling may be applied to high-throughput 3 D phenotyping of large rice populations.展开更多
To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capab...To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capable of matching 3D models efficiently and effectively. In this paper, an enhanced shape distributions-based technique of using geometrical and topological information to search 3D engineering models represented by polygonal meshes was presented. A simplification method of polygonal meshes was used to simplify engineering model as the pretreatment for generation of sample points. The method of sampling points was improved and a pair of functions that was more sensitive to shape was employed to construct a 2D shape distribution. Experiments were conducted to evaluate the proposed algorithm utilizing the Engineering Shape Benchmark (ESB) database. The experiential results suggest that the search effectiveness is significantly improved by enforcing the simplification and enhanced shape distributions to engineering model retrieval.展开更多
In order to reveal the intrinsic fluid-dynamic mechanisms of a pressure-swirl nozzle used for Si3N4 dry granulation,and effectively predict its external spray characteristics,the dynamics of air-atomized liquid two-p...In order to reveal the intrinsic fluid-dynamic mechanisms of a pressure-swirl nozzle used for Si3N4 dry granulation,and effectively predict its external spray characteristics,the dynamics of air-atomized liquid two-phase flow is analyzed using a VOF(Volume of Fraction)method together with the modified realizable k-εturbulence model.The influence of nozzle orifice shape on velocity distribution,pressure distribution is studied.The results show that the pressure difference in a convergent conical nozzle is the largest with a hollow air core being formed in the nozzle.The corresponding velocity of atomized liquid at nozzle orifice is the largest.Using a self-designed atomization experiment platform,the velocity and pressure of atomized liquid and the spray cone angle are measured for three nozzles with different orifice shapes.The micro-morphology of Si3N4 particles is also determined.These data confirm the correctness of numerical simulation.Considering atomization performance of the nozzle,the contraction conical nozzle is more suitable for the atomization of Si3N4 in practical production based on the dry granulation approach.展开更多
Crystal shape distribution, i.e. the multidimensional size distribution of crystals, is of great importance to their down-stream processing such as in filtration as well as to the end-use properties including the diss...Crystal shape distribution, i.e. the multidimensional size distribution of crystals, is of great importance to their down-stream processing such as in filtration as well as to the end-use properties including the dissolution rate and bioavailability for crystalline pharmaceuticals. Engineering crystal shape and shape distribution requires knowledge about the growth behavior of different crystal facets under varied operational conditions e.g. supersaturations. Measurement of the facet growth rates and growth kinetics of static crystals in a crystallizer without stirring has been reported previously. Here attention is given to study on real-time characterization of the 3D facet growth behavior of crystals in a stirred tank where crystals are constantly moving and rotating. The measurement technique is stereo imaging and the crystal shape reconstruction is based on a stereo imaging camera model. By reference to a case study on potash alum crystallization, it is demonstrated that the crystal size and shape distributions (CSSD) of moving and rotating potash alum crystals in the solution can be reconstructed. The moving window approach was used to correlate 3D face growth kinetics with supersaturation (in the range 0.04 - 0.12) given by an ATR FTIR probe. It revealed that {100} is the fastest growing face, leading to a rapid reduction of its area, while the {111} face has the slowest growth rate, reflected in its area continuously getting larger.展开更多
This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallur...This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallurgical transformations using temperature dependent material properties and the enthalpy method. Conduction and keyhole modes welding are investigated using surface and volumetric heat sources, respectively. Transition between the heat sources is carried out according to the power density and interaction time. Simulations are carried out using 3D finite element model on commercial software. The simulation results of the weld shape and dimensions are validated using a structured experimental investigation based on Taguchi method. Experimental validation conducted on a 3 kW Nd: YAG laser source reveals that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The results show great concordance between predicted and measured values for the weld joint shape and dimensions.展开更多
基金supported by the AG600 project of AVIC General Huanan Aircraft Industry Co.,Ltd.
文摘When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape.
基金Project (50871039) supported by the National Natural Science Foundation of ChinaProject (2011ZB0007) supported by the Fundamental Research Funds for Central Universities of ChinaProject (201104090881) support by China Postdoctoral Science Foundation
文摘The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.
基金supported by the National Natural Science Foundation of China(61773272,61976191)the Six Talent Peaks Project of Jiangsu Province,China(XYDXX-053)Suzhou Research Project of Technical Innovation,Jiangsu,China(SYG201711)。
文摘Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.
基金the National Natural Science Foundation of China(52006056)the Key-Area Research and Development Program of Guangdong Province(2020B090923003)the Natural Science Foundation of Hunan through Grant No.2020JJ3012。
文摘Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hydrogel based on N-isopropylacrylamide that achieved a fast and reversible deformation manipulated only by near-infrared(NIR)light.The hydrogel was fabricated by the projection micro stereolithography based 3D printing technique,which can rapidly prototype complex 3D structures.Furthermore,with the variation of the grayscale while manufacturing the hydrogel,the deformation of the hydrogel structure can be freely tuned within a few seconds by losing and absorbing water through adjusting the intensity and the irradiation direction of the NIR light,showing a potential application in ultra-fast object grabbing and transportation.The present study provides a new method for designing ultrafast photothermal responsive hydrogel based microrobot working in water.
基金This work was supported by Grant-in-Aid for Scientific Research (C) (No.17500119)
文摘This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shapers accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06 mm.
基金supported by the National Natural Science Foundation of China (U21A20205)Key Projects of Natural Science Foundation of Hubei Province (2021CFA059)+1 种基金Fundamental Research Funds for the Central Universities (2021ZKPY006)cooperative funding between Huazhong Agricultural University and Shenzhen Institute of Agricultural Genomics (SZYJY2021005,SZYJY2021007)。
文摘Self-occlusions are common in rice canopy images and strongly influence the calculation accuracies of panicle traits. Such interference can be largely eliminated if panicles are phenotyped at the 3 D level.Research on 3 D panicle phenotyping has been limited. Given that existing 3 D modeling techniques do not focus on specified parts of a target object, an efficient method for panicle modeling of large numbers of rice plants is lacking. This paper presents an automatic and nondestructive method for 3 D panicle modeling. The proposed method integrates shoot rice reconstruction with shape from silhouette, 2 D panicle segmentation with a deep convolutional neural network, and 3 D panicle segmentation with ray tracing and supervoxel clustering. A multiview imaging system was built to acquire image sequences of rice canopies with an efficiency of approximately 4 min per rice plant. The execution time of panicle modeling per rice plant using 90 images was approximately 26 min. The outputs of the algorithm for a single rice plant are a shoot rice model, surface shoot rice model, panicle model, and surface panicle model, all represented by a list of spatial coordinates. The efficiency and performance were evaluated and compared with the classical structure-from-motion algorithm. The results demonstrated that the proposed method is well qualified to recover the 3 D shapes of rice panicles from multiview images and is readily adaptable to rice plants of diverse accessions and growth stages. The proposed algorithm is superior to the structure-from-motion method in terms of texture preservation and computational efficiency. The sample images and implementation of the algorithm are available online. This automatic, cost-efficient, and nondestructive method of 3 D panicle modeling may be applied to high-throughput 3 D phenotyping of large rice populations.
基金The Basic Research of COSTIND,China (No.D0420060521)
文摘To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capable of matching 3D models efficiently and effectively. In this paper, an enhanced shape distributions-based technique of using geometrical and topological information to search 3D engineering models represented by polygonal meshes was presented. A simplification method of polygonal meshes was used to simplify engineering model as the pretreatment for generation of sample points. The method of sampling points was improved and a pair of functions that was more sensitive to shape was employed to construct a 2D shape distribution. Experiments were conducted to evaluate the proposed algorithm utilizing the Engineering Shape Benchmark (ESB) database. The experiential results suggest that the search effectiveness is significantly improved by enforcing the simplification and enhanced shape distributions to engineering model retrieval.
基金the National Natural Science Foundation of China(Grant:51964022).
文摘In order to reveal the intrinsic fluid-dynamic mechanisms of a pressure-swirl nozzle used for Si3N4 dry granulation,and effectively predict its external spray characteristics,the dynamics of air-atomized liquid two-phase flow is analyzed using a VOF(Volume of Fraction)method together with the modified realizable k-εturbulence model.The influence of nozzle orifice shape on velocity distribution,pressure distribution is studied.The results show that the pressure difference in a convergent conical nozzle is the largest with a hollow air core being formed in the nozzle.The corresponding velocity of atomized liquid at nozzle orifice is the largest.Using a self-designed atomization experiment platform,the velocity and pressure of atomized liquid and the spray cone angle are measured for three nozzles with different orifice shapes.The micro-morphology of Si3N4 particles is also determined.These data confirm the correctness of numerical simulation.Considering atomization performance of the nozzle,the contraction conical nozzle is more suitable for the atomization of Si3N4 in practical production based on the dry granulation approach.
文摘Crystal shape distribution, i.e. the multidimensional size distribution of crystals, is of great importance to their down-stream processing such as in filtration as well as to the end-use properties including the dissolution rate and bioavailability for crystalline pharmaceuticals. Engineering crystal shape and shape distribution requires knowledge about the growth behavior of different crystal facets under varied operational conditions e.g. supersaturations. Measurement of the facet growth rates and growth kinetics of static crystals in a crystallizer without stirring has been reported previously. Here attention is given to study on real-time characterization of the 3D facet growth behavior of crystals in a stirred tank where crystals are constantly moving and rotating. The measurement technique is stereo imaging and the crystal shape reconstruction is based on a stereo imaging camera model. By reference to a case study on potash alum crystallization, it is demonstrated that the crystal size and shape distributions (CSSD) of moving and rotating potash alum crystals in the solution can be reconstructed. The moving window approach was used to correlate 3D face growth kinetics with supersaturation (in the range 0.04 - 0.12) given by an ATR FTIR probe. It revealed that {100} is the fastest growing face, leading to a rapid reduction of its area, while the {111} face has the slowest growth rate, reflected in its area continuously getting larger.
文摘This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallurgical transformations using temperature dependent material properties and the enthalpy method. Conduction and keyhole modes welding are investigated using surface and volumetric heat sources, respectively. Transition between the heat sources is carried out according to the power density and interaction time. Simulations are carried out using 3D finite element model on commercial software. The simulation results of the weld shape and dimensions are validated using a structured experimental investigation based on Taguchi method. Experimental validation conducted on a 3 kW Nd: YAG laser source reveals that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The results show great concordance between predicted and measured values for the weld joint shape and dimensions.